Desempeño de estimaciones satelitales de GHI 10-minutales usando GOES-16: modelo LCIM

Agustín Laguarda, agu.laguarda@gmail.com

Área de modelado de la radiación por satélite. Integrantes: A. Laguarda (R), R. Alonso-Suárez, L. Dovat, E. Marchesoni, A. Monetta.

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

24 de febrero de 2021

Jornadas LES-II

Breve descripción del modelo satelital

-modelo satelital de irradiación desarrollado por el LES con foco en la región* -usa un índice de nubosidad (CIM) y un modelo preciso de cielo claro -denominación LCIM (LES Cloud Index Model)

$G = G_{cc} \times F(\eta)$

-modelo satelital de irradiación desarrollado por el LES con foco en la región -usa un índice de nubosidad (CIM) y un modelo preciso de cielo claro -denominación LCIM (LES Cloud Index Model)

$G = G_{cc} \times F(\eta)$

-modelo satelital de irradiación desarrollado por el LES con foco en la región -usa un índice de nubosidad (CIM) y un modelo preciso de cielo claro -denominación LCIM (LES Cloud Index Model)

de cielo claro

-modelo satelital de irradiación desarrollado por el LES con foco en la región -usa un índice de nubosidad (CIM) y un modelo preciso de cielo claro -denominación LCIM (LES Cloud Index Model)

-modelo satelital de irradiación desarrollado por el LES con foco en la región -usa un índice de nubosidad (CIM) y un modelo preciso de cielo claro -denominación LCIM (LES Cloud Index Model)

-modelo satelital de irradiación desarrollado por el LES con foco en la región -usa un índice de nubosidad (CIM) y un modelo preciso de cielo claro -denominación LCIM (LES Cloud Index Model)

-modelo satelital de irradiación desarrollado por el LES con foco en la región -usa un índice de nubosidad (CIM) y un modelo preciso de cielo claro -denominación LCIM (LES Cloud Index Model)

LCIM - información satelital

 ρ es el albedo del sistema Tierra + atm. (adim.)

LCIM - información satelital

 ρ es el albedo del sistema Tierra + atm. (adim.)

LCIM - información satelital

 ρ es el albedo del sistema Tierra + atm. (adim.)

Factor de atenuación (F) lineal con 1-ŋ:

Entrenamiento de parámetros a y b

GOES-13 (período 2010 - 2017)

- lon. 75°W -resolución: ~1km (nadir) ~2km(región) frecuencia irregular ~ 2 imágenes/hora

Entrenamiento de parámetros a y b

GOES-13 (período 2010 - 2017)

lon. 75°W
resolución:
~1km (nadir)
~2km(región)
frecuencia irregular
~2 imágenes/hora

ángulo de vista ~40°

	CIM-ESRA					
	Media	$\sigma(adim.)$	$\sigma_{rel}(\%)$			
a	0.876	0.009	1.0			
b	0.088	0.006	6.8			
	C	IM-McCl	ear			
	Madia	(1º)	(04)			
	Media	$\sigma(\text{adim.})$	$\sigma_{rel}(\%)$			
a	0.859	$\sigma(\text{adim.})$ 0.013	$\frac{\sigma_{rel}(\%)}{1.5}$			

Medidas en tierra: - acumulados horarios - control de calidad: BSRN, cotas extremas de modelo CS, inspección visual -5 años de datos por estación (promedio)

Entrenamiento de parámetros a y b

GOES-13 (período 2010 - 2017)

lon. 75°W
resolución:
~1km (nadir)
~2km(región)
frecuencia irregular
~2 imágenes/hora

ángulo de vista ~40°

Medidas en tierra: - acumulados horarios - control de calidad: BSRN, cotas extremas de modelo CS, inspección visual -5 años de datos por estación (promedio)

se obtienen a y b para cada sitio

	CIM-ESRA					
	Media	$\sigma(\text{adim.})$	$\sigma_{rel}(\%)$			
a	0.876	0.009	1.0			
b	0.088	0.006	6.8			
	C	IM-McCl	ear			
	Media	$\sigma(\text{adim.})$	$\sigma_{rel}(\%)$			
a	0.859	0.013	1.5			
b	0.108	0.007	5.6			

gran homogeneidad espacial de parámetros empíricos

	(CIM-ESRA				
	Media	Min.	Máx.	σ		
$\mathrm{rMBD}(\%)$	+0.5	+0.4	+0.6	0.1		
$\mathrm{rRMSD}(\%)$	12.1	11.1	14.0	0.9		
$\rm KSI~(Wh/m^2)$	7.9	7.1	8.8	0.6		
	C	IM-Mo	Clear			
	Media	Min.	Máx.	σ		
rMBD(%)	+0.7	+0.6	+0.9	0.1		
$\mathrm{rRMSD}(\%)$	11.8	10.8	13.7	0.9		
$\rm KSI~(Wh/m^2)$	8.9	7.4	10.3	0.9		
	1.					

media ~439 Wh/m²

	(CIM-ESRA				
	Media	Min.	Máx.	σ		
m rMBD(%)	+0.5	+0.4	+0.6	0.1		
$\mathrm{rRMSD}(\%)$	12.1	11.1	14.0	0.9		
$\mathrm{KSI}~(\mathrm{Wh}/\mathrm{m}^2)$	7.9	7.1	8.8	0.6		
	C	CIM-McClear				
	Media	Min.	Máx.	σ		
m rMBD(%)	+0.7	+0.6	+0.9	0.1		
$\mathrm{rRMSD}(\%)$	11.8	10.8	13.7	0.9		
$\mathrm{KSI}~(\mathrm{Wh}/\mathrm{m}^2)$	8.9	7.4	10.3	0.9		
modia						

desempeño estable con **rRMSD~12% |rMBD|<1%**

media ~439 Wh/m

	CIM-ESRA					
	Media	Min.	Máx.	σ		
rMBD(%)	+0.5	+0.4	+0.6	0.1		
$\mathrm{rRMSD}(\%)$	12.1	11.1	14.0	0.9		
$KSI (Wh/m^2)$	7.9	7.1	8.8	0.6		
	C	CIM-McClear				
	Media	Min.	Máx.	σ		
rMBD(%)	+0.7	+0.6	+0.9	0.1		
$\mathrm{rRMSD}(\%)$	11.8	10.8	13.7	0.9		
$KSI (Wh/m^2)$	8.9	7.4	10.3	0.9		
media ~439 Wh/m ²						

desempeño estable con rRMSD ~12% [rMBD]<1%

	CIM-ESRA					
	Media	Min.	Máx.	σ		
rMBD(%)	+0.5	+0.4	+0.6	0.1		
$\mathrm{rRMSD}(\%)$	12.1	11.1	14.0	0.9		
$\mathrm{KSI}~(\mathrm{Wh}/\mathrm{m}^2)$	7.9	7.1	8.8	0.6		
	C	IM-Mo	Clear			
	Media	Min.	Máx.	σ		
rMBD(%)	+0.7	+0.6	+0.9	0.1		
$\mathrm{rRMSD}(\%)$	11.8	10.8	13.7	0.9		
$\mathrm{KSI}~(\mathrm{Wh}/\mathrm{m}^2)$	8.9	7.4	10.3	0.9		
	media ~439 Wh/m ²					

0.9

50

desempeño estable con rRMSD ~12% [rMBD]<1%

GOES-16 comienza a operar a comienzos de 2018 (GOES-East)	frecuencia regular 10-minutal 3 veces más canales espectrales resolución espacial 4 veces mayor
	resolución espacial 4 veces mayor

GOES-16 comienza a operar a comienzos de 2018 (GOES-East) frecuencia regular 10-minutal 3 veces más canales espectrales resolución espacial 4 veces mayor

GOES-16 comienza a operar a comienzos de 2018 (GOES-East) frecuencia regular 10-minutal 3 veces más canales espectrales resolución espacial 4 veces mayor

LCIM robustez de parámetros empíricos en la región (a y b) estabilidad espacial del desempeño

GOES-16 comienza a operar a comienzos de 2018 (GOES-East) frecuencia regular 10-minutal 3 veces más canales espectrales resolución espacial 4 veces mayor

LCIM robustez de parámetros empíricos en la región (a y b) estabilidad espacial del desempeño

1^{ra} Validación 10-minutal*

**Validación de modelos satelitales Heliosat-4 y CIM-ESRA para la estimación de irradiancia solar en la Pampa Húmeda*. A. Laguarda, P. Iturbide, X. Orsi, M.J. Denegri, S. Luza, L. Burgos, V. Stern y R. Alonso-Suárez. Aceptado para su publicación en la revista ERMA en 2021.

1^{ra} Validación 10-minutal*

 - en sitios no utilizados para el entrenamiento y diferente período de tiempo
 - se incluye validación de modelo físico de CAMS (Heliosat-4) como referencia

Mediciones en tierra de referencia

GHI para toda condición de cielo (2018-2020)								
Métricas	Lu	Luján Paraná		Paraná		onia	Monte	evideo
	Heliosat-4	CIM- ESRA	Heliosat-4	CIM- ESRA	Heliosat-4	CIM- ESRA	Heliosat-4	CIM- ESRA
R	0,953	0,970	0,946	0,969	0,959	0,973	0,957	0,976
rMBD (%)	-1,4	+1,7	-2,0	+2,2	-2,4	+0,7	-5,0	+1,2
rRMSD (%)	20,8	16,7	21,9	16,5	19,6	15,8	21,0	15,6
GHI media (W/m ²)	442	2,1	449,7		449,7 445,9		437,4	

GHI para toda condición de cielo (2018-2020)								
Métricas	Lu	Luján		Paraná		onia	Mont	evideo
	Heliosat-4	CIM- ESRA	Heliosat-4	CIM- ESRA	Heliosat-4	CIM- ESRA	Heliosat-4	CIM- ESRA
R	0,953	0,970	0,946	0,969	0,959	0,973	0,957	0,976
rMBD (%)	-1,4	+1,7	-2,0	+2,2	-2,4	+0,7	-5,0	+1,2
rRMSD (%)	20,8	16,7	21,9	16,5	19,6	15,8	21,0	15,6
GHI media (W/m ²)	442,1		449,7		44	5,9	43	7,4

-correlaciones >0.94 en todos los casos -Heliosat-4 subestima -LCIM sobreestima -LCIM tiene rRMSD 5% menores

desempeño estable con rRMSD ~16% [rMBD]<2.2%

menor ocurrencia de irrad. altas

extremos

1200

-se valida LCIM a nivel 10 minutal (basado en ESRA y ciclos anuales de turbidez) en 4 nuevos sitios de la Pampa Húmeda y se compara con Heliosat-4.

- -se verifica buen desempeño e indicadores con homogeneidad territorial. Heliosat-4: rMBD -2 %, rRMSD 21% y LCIM: **rMBD +1 %, rRMSD 16%**
- -Dificultad de ambos modelos en captar variaciones rápidas de irradiancia (rRMSD pasan de 12% a nivel horario a 16% 10-minutal)
- -LCIM (basado en GOES-16) es más preciso para la región que Heliosat-4 (MSG). Incluso en estaciones no consideradas para su entrenamiento

-se valida LCIM a nivel 10 minutal (basado en ESRA y ciclos anuales de turbidez) en 4 nuevos sitios de la Pampa Húmeda y se compara con Heliosat-4.

-se verifica buen desempeño e indicadores con homogeneidad territorial. Heliosat-4: rMBD -2 %, rRMSD 21% y LCIM: **rMBD +1 %, rRMSD 16%**

-Dificultad de ambos modelos en captar variaciones rápidas de irradiancia (rRMSD pasan de 12% a nivel horario a 16% 10-minutal)

-LCIM (basado en GOES-16) es más preciso para la región que Heliosat-4 (MSG). Incluso en estaciones no consideradas para su entrenamiento

mejor desempeño de LCIM puede deberse a dos factores:
i) al ser semi-empírico, tiene parámetros ajustados a la región, aunque sea utilizando información de 10 sitios en el período 2010-2017
ii) se basa en información del satélite GOES-East, con mejor vista de la región que Heliosat-4, MSG (~70°)

-se valida LCIM a nivel 10 minutal (basado en ESRA y ciclos anuales de turbidez) en 4 nuevos sitios de la Pampa Húmeda y se compara con Heliosat-4.

-se verifica buen desempeño e indicadores con homogeneidad territorial. Heliosat-4: rMBD -2 %, rRMSD 21% y LCIM: **rMBD +1 %, rRMSD 16%**

-Dificultad de ambos modelos en captar variaciones rápidas de irradiancia (rRMSD pasan de 12% a nivel horario a 16% 10-minutal)

-LCIM (basado en GOES-16) es más preciso para la región que Heliosat-4 (MSG). Incluso en estaciones no consideradas para su entrenamiento

mejor desempeño de LCIM puede deberse a dos factores:

i) al ser semi-empírico, tiene parámetros ajustados a la región, aunque sea utilizando información de 10 sitios en el período 2010-2017

ii) se basa en información del satélite GOES-East, con mejor vista de la región que Heliosat-4, MSG (~70°)

resultados continúan sugieriendo que LCIM con parámetros promediados tiene alta extrapolabilidad espacial, al menos en la región climática afín de la Pampa Húmeda.

modelado de cielo claro:

- captar heterogeneidad local de la atmósfera sin nubes
 -> uso de modelos más detallados (McClear, REST-2)
 e información atmosférica disponible como MERRA-2
 en vez de ciclos estacionales

modelado de cielo claro:

- captar heterogeneidad local de la atmósfera sin nubes
 -> uso de modelos más detallados (McClear, REST-2)
 e información atmosférica disponible como MERRA-2
 en vez de ciclos estacionales

mejoras al tratamiento de nubes:

- caracterización del brillo de fondo (canal visible)
- uso de otros canales espectrales

modelado de cielo claro:

- captar heterogeneidad local de la atmósfera sin nubes
 -> uso de modelos más detallados (McClear, REST-2)
 e información atmosférica disponible como MERRA-2
 en vez de ciclos estacionales

mejoras al tratamiento de nubes:

- caracterización del brillo de fondo (canal visible)
- uso de otros canales espectrales

Además:

- estimar radiación en bandas relevantes: UV, PAR

Estimativos de GHI disponibles en sitio web

sitio y productos en desarrollo...

6	🔿 les.edu.uy/online/stack-loc/	80% ★	
	Histórico de GHI en localidades pre-configuradas	 LE	S
	Consulta		
	Localidad		
	/Seleccionar estación/		~
	Mes		
	/Seleccionar mes/		~
	Año		
	/Seleccionar año/		~
	Enviar Borrar		

 - acceso libre: http://les.edu.uy/online/stack-loc/ (sobre 60 sitios pre-configurados, portal en construcción para la generación automática en sitios arbitrarios)
 -disponibilidad 2018-hoy
 -archivos mensuales
 Versión actual LCIM:

 -parámetros a y b constantes
 -basado en ESRA con ciclos T_L regionales
 -rango dinámico específico para cada sitio

- 19 emplazamientos de plantas fotovoltaicas en el pais sitios SONDA, SMN, de GERSolar, INENCO.
- varios sitios fuera de la Pampa Húmeda (desempeño sin validar)
- actualmente estudiando el rendimiento en Salta

¡Gracias por la atención!

hora de preguntas...

Agustín Laguarda

agu.laguarda@gmail.com

24 de febrero de 2022

Jornadas LES-II

Heliosat-4*

- -modelo satelital desarrollado por el Copernicus Atmosphere Meteorological Service (CAMS)
- -combina dos submodelos, McClear y McCloud, para estimar GHI y DNI
- -ambos utilizan ábacos o Look Up Tables (LUT) para casos preconfigurados + funciones de interpolación (operacional).
- -LUT se obtienen con las salidas de LIBRADTRAN, modelo de transferencia radiativa (RTM)

	modelo de cielo claro:		efecto de nubosidad:	
Heliosat-4 =	McClear	+	McCloud	
Variables de entrada:	-Estado de la atmósfera: AOD ₅₅₀ , vapor de agua, exponente Angström, ozono	-Propiedades de nubes: profundidad óptica, tipo de nubes, cobertura -Albedo terrestre		
Fuente:	-reanálisis de CAMS (freq. tri-horario)	-canales visibles e infrarrojos de MSG (freq. 15-minutal)		
		-MODIS (freq. diario)		

*Qu, Z. et al.(2017). Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteorologische Zeitschrift, 26(1):33–57