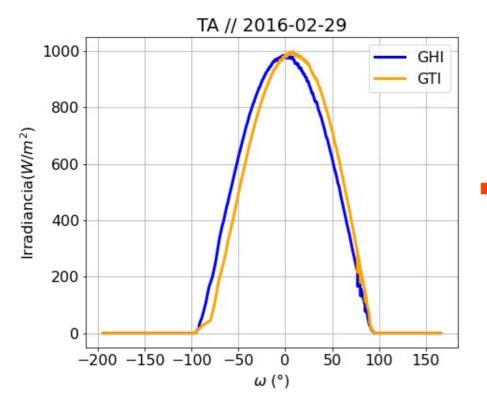
Algoritmo de detección de azimut en mediciones de campo de radiación solar en plano inclinado

Inti Piccioli


Laboratorio de Energía Solar - UdelaR

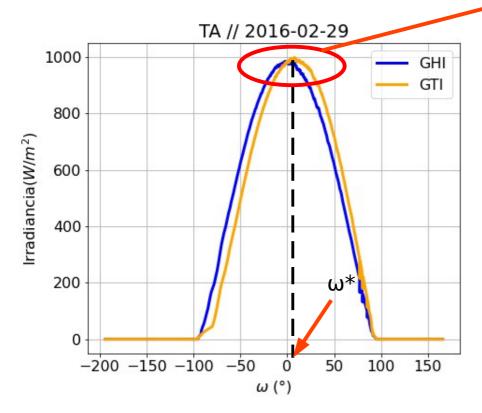
inti.piccioli@gmail.com

MOTIVACIÓN

Trabajando en modelos de transposición (GTI a partir de GHI,DHI,DNI):

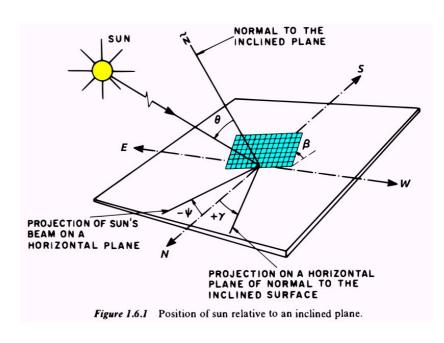
Se observa desalineación en la medida de GTI (supuesta mirando al N) - Desvío azimutal.

Indicadores de incerteza al evaluar modelos de transposición de irradiancia en PH a PI:


Modelo	rMBE(%)	rRMSD (%)
iso	-3.1	12.3
hd	-1.4	11.7
per	0.6	11.6
klu	0.2	11.5
rei	-0.9	11.7

Suponiendo que la superficie mira hacia el norte.

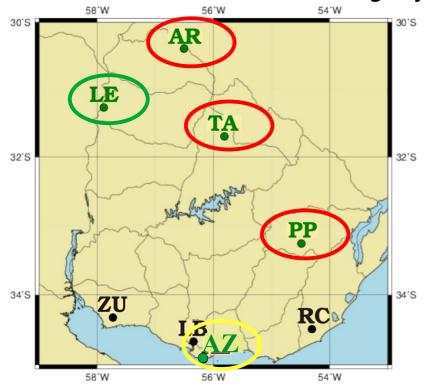
rRMSD horarios muy altos (\sim 3 a 8% para sup. mirando al ecuador).


MOTIVACIÓN

¿Cómo determinar este desvío?

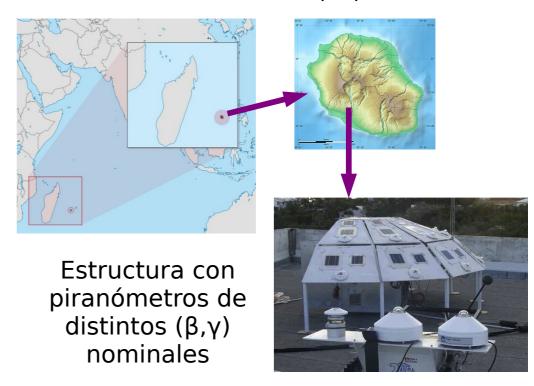
El máximo de GTI se alcanza a las ω^* en términos del ángulo horario.

Se intentará relacionar ω^* con el azimut γ



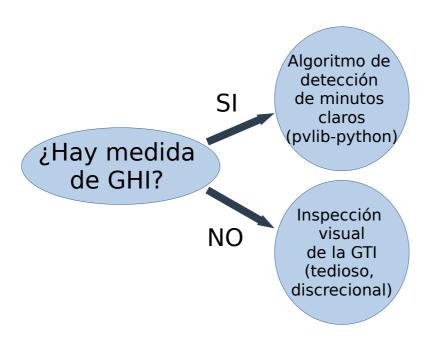
No es posible relacionarlos geométricamente.

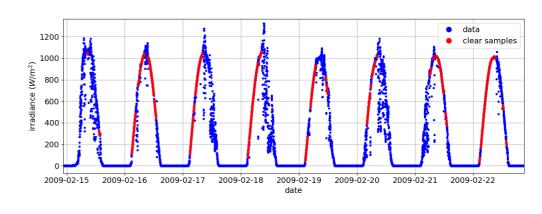
El máximo de GTI no ocurre cuando θ es mín.


DATOS

5 estaciones de la RMCIS (Uruguay)

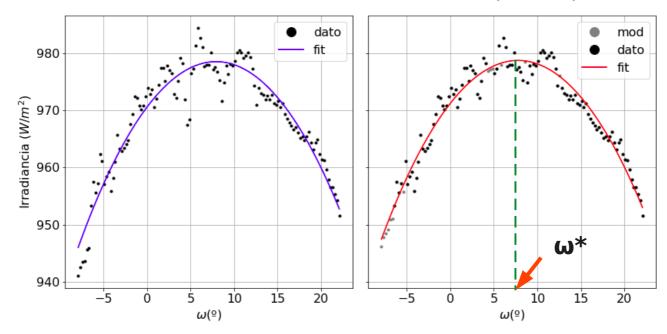
Azimut desconocido Medidas de GHI simult. Buena estadística


Islas Reunion (Fr.) - RE



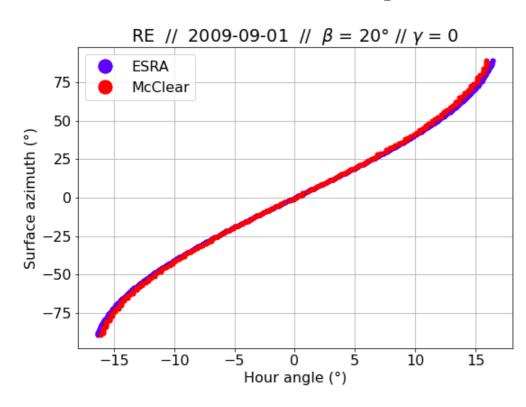
1 año de GTI, a escala minutal GHI, DHI, DNI simult. muy escasa Validación / asignar incertidumbre

- 1) Selección de días claros apropiados
- 2) Determinación de ω* a partir de GTI
- 3) Relación ω* azimut // Cálculo de azimut por día
- 4) Inspección de la serie temporal de azimuts
- 5) Estimación final del azimut de la sup.


1) Selección de días claros apropiados

2) Determinación de ω* a partir de GTI

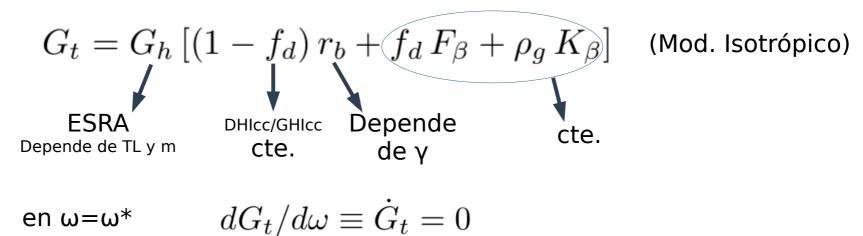
Se ajusta la medida de GTI alrededor de su máximo por un polinomio cuadrático



3) Relación ω* - γ // Cálculo de γ por día

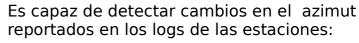
Modelo de CC (GHI, DHI, DNI)cc (GTIcc, ω*
+ Modelo de transposición (γ variable)

- Para un rango de γ se calcula el ω^*
- γ ω* debe ser invertible (en el rango de interés)
- ¿Modelo CC? ESRA y McClear (2 implementaciones)
- ¿Modelo de transp.? Isotrópico vs Perez (simple vs complejo)


3) Relación ω* - γ // Cálculo de γ por día

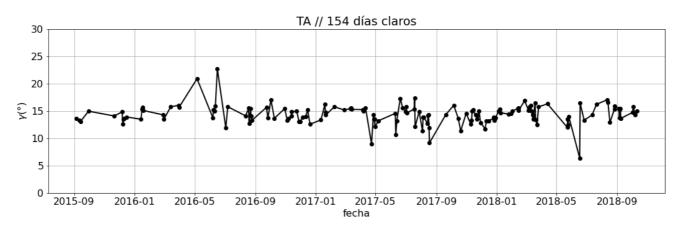
- ESRA + Per // McClear + Iso
- Sustituyendo el ω^* en 2), se obtiene el estimativo γ_i para ese día.

3) Relación ω* - γ // Cálculo de γ por día


Una alternativa analítica:

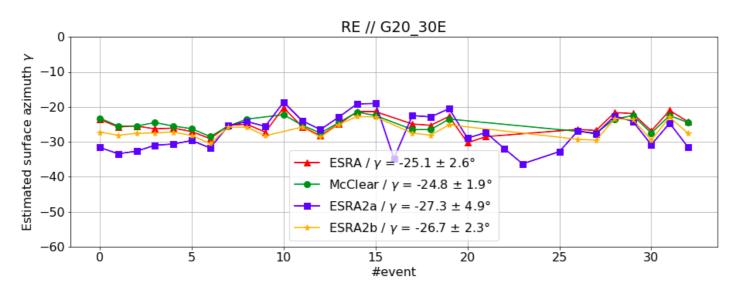
Operando se llega a una ecuación cuya solución es γ_i

4) Inspección de la serie temporal de azimuts

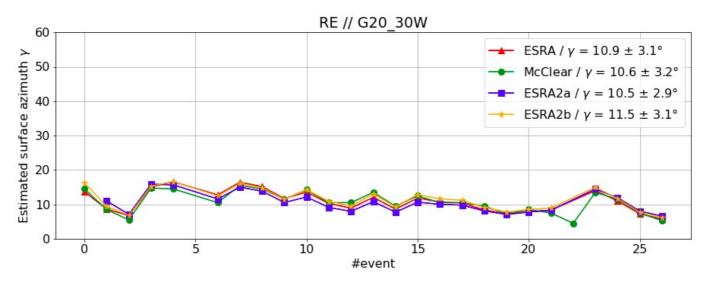


Se reubica la estación a un metro	(al sur oeste) de posición anterior
La estación no estaba orientado	al norte, sino al noroeste 20º
Esto afectó la GTI hasta la fecha.	
Se determina el N usando varilla o	le sombra y mediodía solar.
Se colocan 4 tapas de hormigón o	le 60*60 cm.
Se fija el soporte a las losas con t	ulones, ahora orientado al N.
Uno de los ejes de la unión de las	losas apunta al norte.
Se miden instrumentos.	
Se ajustan lingas.	

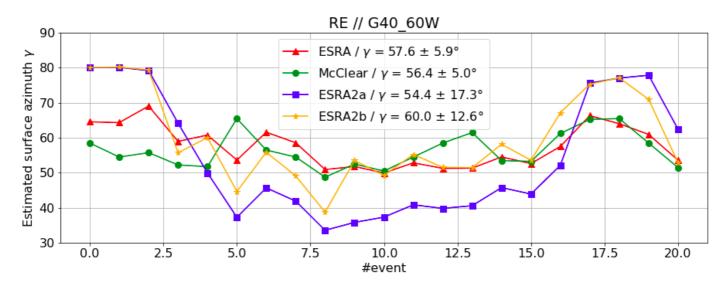
5) Estimación final del azimut de la sup.



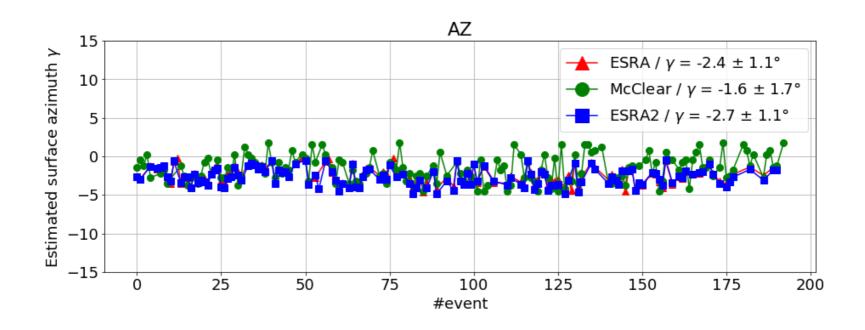
Calculo $\overline{\gamma}$ y σ de los γ_i ; descarto aquellos a más de 2σ de $\overline{\gamma}$



RE:


nombr e	inc_nom	az_nom	az_ESRA	u_ESRA	az_mc	u_mc	mean	sdv	<u>d = est - nom</u>
G20-0	20	0.0	-1.3	2.0	-1.7	2.5	-1.5	2.3	-1.5
G20-30E	20	-30	-25.1	2.6	-24.8	1.9	-25.0	2.3	5.1
G20-30W	20	30	10.9	3.1	10.6	3.2	10.8	3.2	-19.3
G20-60E	20	-60	-47.2	3.7	-46.5	3.2	-46.9	3.5	13.2
G40-0	40	0	-0.9	0.7	-1.1	0.8	-1.0	0.8	-1.0
G40-30E	40	-30	-32.3	1.9	-31.5	1.6	-31.9	1.8	-1.9
G40-30W	40	30	28.8	2.3	28.6	2.4	28.7	2.4	-1.3
G40-60E	40	-60	-73.3	8.7	-68.4	3.9	-70.9	6.7	-10.9
G40-60W	40	60	57.6	5.9	56.4	5	57.0	5.5	-3.0

nombr e	inc_nom	az_nom	az_ESRA	u_ESRA	az_mc	u_mc	mean	sdv	d = est - nom
G20-0	20	0.0	-1.3	2.0	-1.7	2.5	-1.5	2.3	-1.5
G20-30E	20	-30	-25.1	2.6	-24.8	1.9	-25.0	2.3	5.1
G20-30W	20	30	10.9	3.1	10.6	3.2	10.8	3.2	-19.3
G20-60E	20	-60	-47.2	3.7	-46.5	3.2	-46.9	3.5	13.2
G40-0	40	0	-0.9	0.7	-1.1	0.8	-1.0	0.8	-1.0
G40-30E	40	-30	-32.3	1.9	-31.5	1.6	-31.9	1.8	-1.9
G40-30W	40	30	28.8	2.3	28.6	2.4	28.7	2.4	-1.3
G40-60E	40	-60	-73.3	8.7	-68.4	3.9	-70.9	6.7	-10.9
G40-60W	40	60	57.6	5.9	56.4	5	57.0	5.5	-3.0


nombr e	inc_nom	az_nom	az_ESRA	u_ESRA	az_mc	u_mc	mean	sdv	d = est - nom
G20-0	20	0.0	-1.3	2.0	-1.7	2.5	-1.5	2.3	-1.5
G20-30E	20	-30	-25.1	2.6	-24.8	1.9	-25.0	2.3	5.1
G20-30W	20	30	10.9	3.1	10.6	3.2	10.8	3.2	-19.3
G20-60E	20	-60	-47.2	3.7	-46.5	3.2	-46.9	3.5	13.2
G40-0	40	0	-0.9	0.7	-1.1	0.8	-1.0	0.8	-1.0
G40-30E	40	-30	-32.3	1.9	-31.5	1.6	-31.9	1.8	-1.9
G40-30W	40	30	28.8	2.3	28.6	2.4	28.7	2.4	-1.3
G40-60E	40	-60	-73.3	8.7	-68.4	3.9	-70.9	6.7	-10.9
G40-60W	40	60	57.6	5.9	56.4	5	57.0	5.5	-3.0

Indicadores de incerteza al evaluar modelos de transposición de irradiancia en PH a PI (est. TA):

	azimı	ut = 0°	azimut = 14.5°			
Modelo	rMBE	rRMSD	rMBE	rRMSD		
iso	-3.1	12.3	-2.8	6.1		
hd	-1.4	11.7	-1.1	4.2		
per	0.6	11.6	0.9	3.9		
klu	0.2	11.5	0.5	4.0		
rei	-0.9	11.7	-0.6	4.0		

Mención especial a A. Laguarda:

MUCHAS GRACIAS

Contacto: inti.piccioli@gmail.com