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Abstract
Ultraviolet (UV) irradiance from the Sun has potential negative health impacts.
Erythemal UV irradiance (UV-E) is obtained by weighting UV radiation in the
250-400 nm range with the average skin erythemal response function. UV-E is
proportional to the UV Index (UVI), a tool used worldwide to inform the public
about this environmental hazard. Since this magnitude is not currently measured
at most meteorological sites, satellite based estimates are often used to generate
UV-E information over broad areas. However, for a climatological characteriza-
tion of variability and typical doses of UV-E, long time series with low biases
are required. An alternative approach is to estimate UV-E from readily available
information with which UV-E is highly correlated. This work builds upon previ-
ous research, which evaluated a simple model (Power Model or PM) to estimate
UV-E from Global Horizontal Irradiance (GHI), relative air mass, and total atmo-
spheric ozone concentration at the 10-minute level. In that general analysis, the
model showed an uncertainty below 12% (as measured by its relative Root Mean
Squared Deviation or rRMSD) when compared with ground UV-E measurements.
Here, we present a more in-depth assessment of this model, using high-quality
data from four mid-latitude temperate sites. The deviations of the model esti-
mates from UVI ground measurements are analyzed under different cloudiness
conditions and across a broad range of air masses. Our results confirm that PM
performs best under clear skies and low air masses, precisely the conditions as-
sociated to the higher incident solar irradiances and potentially dangerous UV
levels. Under these conditions, the PM has an average accuracy (rRMSD across
sites) of less than 6% of the average of the measurements and outperforms . These
results confirm that the model, particularly in its unbiased version, is a reliable
and practical tool for the climatological analysis of erythemal UV irradiance.
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1 Introduction
Ultraviolet (UV) irradiance from the Sun represents less than 10% of the total ex-
traterrestrial solar irradiance and most of it is absorbed in the atmosphere. However,
the small amount of UV irradiance reaching ground level has important impacts on
human health and biological systems and causes degradation processes in exposed
plastic materials.

According to the ISO 21348:2007 standard (ISO, 2007), solar UV radiation is cat-
egorized into three sub-bands: UV-C (100–280 nm), UV-B (280–315 nm) and UV-A
(315–400 nm). The UV-C sub-band, the most energetic and potentially damaging UV
radiation, is completely absorbed in the atmosphere mostly by ozone and molecular
oxygen. Most of the UV-B band is also absorbed by the atmosphere, but a small and
variable amount persists in the ground level solar spectrum. This component is poten-
tially dangerous to human health, enhancing skin aging and significantly increasing the
risk of skin cancer. Furthermore, cumulative exposure to environmental UV-B irradi-
ance over extended time periods accelerates the degradation of proteins in the eye and
may eventually lead to cataracts (Ji et al, 2015). UV-A is the least energetic UV sub-
band and accounts for approximately 95% of the UV solar radiation at ground level,
since it is weakly absorbed in a clear atmosphere. It penetrates into the skin, causing
tanning and skin aging. Recent evidence suggests that UV-A may also contribute to
skin cancer through indirect mechanisms (Liu-Smith et al, 2017).

1.1 Erythemal UV (UV-E)
The effects of UV irradiance on the human skin are best evaluated taking into ac-
count the skin response function which, in essence, defines how much of the incident
UV spectral irradiance is absorbed at each wavelength by an “average” skin type. Dif-
ferent skin types have different response functions, so a standarized Erythema action
spectrum response function representing the response of an average skin type to UV
radiation has been defined in 1998 by the International Commission on Illumination
(CIE) and later adopted as an ISO-CIE joint standard (ISO, 1999). This standard
erythemal skin response function, SER(λ), is the result of a mathematical fit to ex-
perimental data, represented by three straight lines on a logarithmic plot, as shown
in Fig. 1(a). It can be parametrized by

Ser(λ) =


1.0 for 250 nm < λ ≤ 298 nm
100.094(298−λ) for 298 nm < λ ≤ 328 nm
100.015(140−λ) for 328 nm < λ ≤ 400 nm

(1)

with the wavelength λ expressed in nm (Webb et al, 2011). Since the erythemal skin
response in the UV-B range is an order of magnitude higher than in the UV-A range,
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even relatively low levels of UV-B exposure, accumulated over time, can significantly
impact human health. The erythemal UV solar irradiance (UV-E, in mW/m2) is
defined in terms of the spectral solar irradiance E(λ) (in W/m2nm) as,

UV-E =

∫ 400 nm

280 nm

Ser(λ)E(λ) dλ. (2)

In Fig. 1(b) the spectral global irradiance in the 300-400 nm range is shown as
measured on a horizontal surface by an Eko MS711 spectroradiometer (spectral range:
300–1100 nm). This sample measurement (blue line) corresponds to an early spring
day under clear sky conditions at the Solar Energy Laboratory (LES) main facility, in
northern Uruguay, used in this work (see Table 2 for the exact location). The black
curve corresponds to the standard extraterrestrial irradiance in this range (Gueymard,
2004). The blue curve is the measured spectral irradiance at ground level, E(λ) and
the green curve is the spectral UV-E, Ser(λ)E(λ). A dashed vertical line separates the
UV-A and UV-B sub-bands contributions to UV-E. In this example, UV-B contributes
about 73% of the UV-E irradiance1. The global UV Index (UVI) is used worldwide
to communicate and alert the population in simple terms about the health-related
hazards associated to exposure to solar UV irradiance. One unit of UVI is equivalent
to a UV-E irradiance of 25mWm−2 (UVI = UV-E/25mWm−2) so it is dimension-
less and usually below 20. Prolonged exposure to UVI values greater than 8 is not
recommended, according to WHO guidelines (World Health Organization, 2002).

Figure 1 (a) Standard Erythemal response, Eq. (1). (b) Measured global UV Spectral irradiance
on a horizontal plane for the LES site (blue) and the corresponding UV-E from Eq. (2) (green). In
black, the extraterrestrial standard irradiance (ET0).

Understanding the inter-annual variability of UVI and other climatic characteri-
zations of UV-E, such as daily average doses, is essential for assessing its potential
occupational health impacts. However, despite the importance of monitoring UV-E,

1The restriction λ > 300 nm imposed by the measuring apparatus implies that some of the UV-B
contribution is not accounted for in this example.
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its measurement remains limited. Even though several commercially available instru-
ments can measure environmental UV-E, they require frequent calibration and this
magnitude is not currently included in the set of routine measurements maintained
by most meteorological stations. Consequently, real-time UVI information is often de-
rived from publicly available satellite-based estimates, which offer global coverage but
provide only an approximation to the real conditions at specific locations. An example
of this kind of information is provided by the CAMS (Copernicus Atmospheric Mon-
itoring System) UVI product (Copernicus Atmosphere Monitoring Service (CAMS),
2024). On the other hand, ground UV-E (or UVI) measurements, when available, are
only representative of a small geographical area around the measurement site.

As for other solar radiation sub-bands, techniques used to model solar UV radiation
at ground level can be grouped in three approaches: Radiative Transfer Models (RTM),
models that use Artificial Neural Networks (ANN) and empirical (or phenomenolog-
ical) models. RTMs simulate the interaction of solar radiation with the atmosphere,
accounting for absorption and scattering by various atmospheric constituents (Čížková
et al, 2018; Arola et al, 2002). They are computationally intensive and can provide
spectral information for ground level solar irradiance and its sub-bands, provided the
atmospheric composition is known in detail since they are highly sensitive to the ac-
curacy of these inputs. An operational example based on this approach is the UV
product from CAMS and the European Centre for Medium-Range Weather Forecasts
(ECMWF), which uses a numerical weather model to provide atmospheric informa-
tion (including cloud cover and its optical properties) and a RTM to estimate surface
spectral irradiance, both under clear and all sky conditions (Eskes et al, 2024). A re-
cent validation of this UV product over several sites worldwide (Pitkänen et al, 2020)
shows a Root Mean Square Deviaton (rRMSD) of 36% and Mean Bias Deviations
(rMBD) in the range ±20%, relative to the average of the measurements (see Subsec-
tion 2.2 for the definitions of these metrics). Simplified approaches based on RTMs,
such as SMARTS (Gueymard, 2019), use parametrizations to describe scattering and
absorption of solar radiation by atmospheric components and can provide ground
spectral irradiance, including UV-A and UV-B bands, without being intensive in com-
putational resources. However, these physical spectral models are restricted to clear
sky conditions and their accuracy is also limited by the accuracy of the atmospheric
information available.

ANN models have been used successfully to estimate ground level UV irradiance
(Dieste-Velasco et al, 2023). They require large amounts of local training data (includ-
ing UV irradiance and environmental and atmospheric data) and provide no physical
insight on the relationship between auxiliary variables and UV irradiance. Usually
they can perform accurately at one location but require a new training (with all the
training data) to reproduce this performance at a different location. Thus, there is a
need for alternative methods that allow reliable long-term UVI estimation from more
commonly measured meteorological variables. The development of simple yet robust
models that estimate UV-E from widely available data sources could enable better
climatological studies and health risk assessments, especially in regions where UV
irradiance measurements are scarce.
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Phenomenological models attempt to simplify the problem of UV estimation us-
ing a set of relevant auxiliary variables which are easily available (for instance global
horizontal irradiance, ozone column and aerosol density) (Habte and Sengupta, 2020;
Laguarda and Abal, 2019; Antón et al, 2008, 2009). Their coefficients will require ad-
justment to reduce biases, but one set of coefficients can be used over broad areas
with similar climates, with acceptable accuracy loss. Since they are (by design) based
on easily accessible information, they may be trained easily for any desired location.
The choice of the auxiliary variables in a phenomenological model represents a com-
promise between achieving enough accuracy over the target region without using too
many adjustable coefficients which may affect its usability.

The most basic phenomenological model uses measured Global Horizontal Irradi-
ance (GHI) as its single auxiliary variable and assumes a constant UV-E/GHI ratio,
thus using a single adjustable parameter. Of course, there are several relevant fac-
tors affecting ground-level UV-E irradiance, such as cloud cover, ozone column, air
mass (solar altitude), surface albedo, aerosol content and water vapor (Bernhard et al,
2023). The relative importance of each factor will depend on local characteristics, in
particular the typical climate. Using GHI as auxiliary variable includes, to some ex-
tent, the effects of water vapor or aerosol density. Excluding areas with particular
characteristics (such as seasonal snow cover, mountains or deserts) the albedo effects
are partially present also in GHI. However, the role of albedo and materials reflectiv-
ity must be considered for modeling UV occupational doses under realistic conditions
(Turner and Parisi, 2018). Therefore, GHI, air mass and ozone content are a set of aux-
iliary variables which represent a good compromise between accuracy and simplicity
when modeling global horizontal UV-E at ground level.

1.2 Objective of this work
As mentioned, several linear and non-linear UV irradiance models have been proposed
and evaluated using GHI, air mass and ozone concentration as input information.
In a recent work (Laguarda et al, 2024) we explored the performance of different
phenomenological parametrizations for modeling UV-A, UV-B and UV-E from these
variables using data for five temperate mid-latitude sites. The best model for UV-E was
based on a product of power functions in these variables, thus the name ‘Power Model’.
This model was first proposed in Antón Martínez (2007); Antón et al (2008) and
tested in areas of Spain. Recently, we have assessed the overall performance of three
phenomenological models for UV irradiance estimation (A, B and Erythema), using
data from five sites described in Table 2 and the total ozone column from the Modern-
Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) and
the PM was identified as the best model for UV-E estimation (Laguarda et al, 2024)
with this input information.

The main objective of this study is to complement the general results in Laguarda
et al (2024) with a detailed assessment of the Power Model for UV-E, providing a
breakdown of its performance under varying cloudiness conditions and solar altitudes.
Particular emphasis is placed on clear sky conditions and low air mass (or high solar al-
titude), as these conditions are associated with high UVI levels with a potential health
hazard. This new information on the PM performance will highlight its strengths and
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limitations. In particular, the suitability of the PM as a tool for the long-term clima-
tological characterization of UV-E over large regions with similar temperate climates
is considered, in the context of providing reliable health advice to the population.

The paper is organized as follows. In Section 2 a description of the PM is provided.
Methodological aspects and details for the data sources are provided, include the
definition of sub-categories in terms of air mass and clearness index. Section 3 includes
the performance indicators for each pair of sub-categories and a discussion on their
significance. Finally, Section 4 summarizes our conclusions.

2 Methodology and Datasets

2.1 The Power Model (PM) approach
As mentioned in the introduction, in previous work Laguarda and Abal (2019); La-
guarda et al (2024), several phenomenological models were evaluated for estimating
UV-A, UV-B, and UV-E from GHI, using relative air mass (m) and total ozone col-
umn [O3] as predictors. The best performing model for UV-E, based on a product of
power functions, is referred to as the Power Model (PM)

UV-E = a0 × GHI × ka1
t ×ma2 × ([O3]/100)

a3 , (3)

where UV-E is in mW/m2, GHI in W/m2, [O3] in Dobson Units (DU) and the air
mas m and clearness index kt are unitless. The air mass is computed from the solar
zenith angle (or, equivalently, from the solar altitude) for a given time and location
(Iqbal, 1983). The clearness index kt is defined as the ratio of GHI to extraterrestrial
irradiance projected on a horizontal plane,

kt =
GHI

SscFn sinαs
, (4)

where Ssc = 1361 W/m2 is the solar constant (Kopp and Lean, 2011), Fn is the orbital
(or Earth-Sun distance) correction factor (Spencer, 1971) and αs is the solar altitude
angle.

The coefficients ai(i = 0, 1, 2, 3) in Eq. (3) have been obtained in Laguarda et al
(2024) adjusting data from four sites with similar temperate climates described in
Table 2. The average set of coefficients from these four sites, shown in Table 1, defines
an "average model" which is well suited for satellite-based estimation of UV-E over
broad regions although it will be less accurate than a locally adjusted model over
a given site based on local GHI measurements. For comparison, the second row in
Table 1 provides the site-specific coefficients for the LES site. This approach is useful
because the four sites in Table 2 share similar characteristics.

2.2 Performance Metrics
Three performance metrics frequently used in the solar resource assessment field are
used to assess the performance of the UV-E model: Mean Bias Deviation (MBD), Root
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Table 1 Set of coefficients for the Power Model (PM),
Eq. (3), from Ref. Laguarda et al (2024).

a0 a1 a2 a3

average model 0.705 -0.207 -1.247 -0.950
local model (LES) 0.545 -0.247 -0.942 -0.783

Mean Squared Deviation (RMSD) and Kolmogorov-Smirnov Integral (KSI) (Guey-
mard, 2014). The first two are defined, in terms if the residuals, εi = ŷi − yi, where ŷi
represent the modeled irradiances and yi are the corresponding measured irradiances,
as

MBD =
1

N

N∑
i=1

εi, (5)

RMSD =

[
1

N

N∑
i=1

ε2i

] 1
2

(6)

respectively, where N is the number of samples. Both metrics (in mW/m2) express
different aspects of the accuracy of a model and are linked by the standard deviation
of the residuals, σ, which quantifies the variability of the model’s errors around its
mean bias

σ =
√

RMSD2 − MBD2. (7)
Notice that σ ≤ RMSD and an unbiased model verifies σ = RMSD. This is a
useful relation for visualizing performance results in a circular diagram, as shown in
Subsection 3.2.

The Kolmogorov-Smirnov Integral or KSI (Espinar et al, 2009) measures the statis-
tical similarity between the cumulative probability function for the model’s estimates
and measured values (F̂ and F respectively) across a common range for the target
variable y,

KSI =
∫

|F̂ (y)− F (y)| dy. (8)

KSI is always positive and has irradiance units, with lower values indicating greater
statistical similarity between the datasets. While a low rRMSD value often corresponds
to a low KSI, these two metrics capture different aspects of the model’s performance.

Relative versions of these indicators, rMBD, rRMSD, σr and rKSI, are expressed
as a % of the average ⟨y⟩ of the measurements, i.e. σr = 100× σ/ ⟨y⟩.

2.3 Data for model assessment

2.3.1 Ground measurements

The dataset used in this work is a subset of the one used in Laguarda et al (2024), from
which one site without UV-E measurements has been removed. Simultaneous ground
GHI and UV-E measurements, taken at 1-minute intervals, from four temperate sites
are used. The data was collected between 2018 and 2021 in all cases. Location details,
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climate classification (Köppen-Geiger scheme Peel et al (2007)) and number of (GHI,
UV-E) pairs after quality control are indicated in Table 2.

Details on instrumentation and quality control procedures are described in La-
guarda et al (2024), so only a brief overview is included here for completeness. The
datasets were reduced to 10-minute intervals prior to processing. This time resolution
reduces short term variations and is sufficient to enable later use of the PM with GHI
estimates based on geostationary satellite cloud information (GOES series), which are
available with this time resolution since 2017 (Laguarda et al, 2020).

Table 2 Measurement site information and updated Köppen Geiger climate classification (Peel
et al, 2007). The number of records (and % relative to records with solar altitude (αs) greater than
7◦) that passed the quality control filters (see Table 3) are shown in the last column. Coordinates
are in degrees and altitude is above mean sea level in meters.

Site location Code Lat. Lon. Alt. Climate Records (QC %)

Salto, Uruguay LES -31.28 -57.92 56 Cfa 59026 (95.0)
Golden, USA GCO +39.74 -105.18 1829 Dfb 78901 (99.0)
Goodwin Cr., USA GWN +34.25 -89.87 98 Cfa 77765 (96.4)
Pilar, Argentina PIL -31.68 -63.87 330 Cfa/Cwa 58431 (90.0)

For the assessment of the UV-E estimates, it is desirable to exclude infrequent or
atypical measurements. To this end, a quality control procedure was applied to GHI
and UV-E measurements in order to filter extreme values. The filters for GHI are the
lower and upper bounds recommended by the Baseline Surface Radiation Network
(BSRN) (McArthur, 2005). In the case of UV-E, since typical fractions UV-E/GHI
decrease with air mass and increase with solar irradiance, lower and upper bounds can
be applied to them. In addition, a threshold solar altitude of αs > 7◦ is used since
hemispherical measurements, such as GHI and UV-E, are prone to high directional
(cosine) errors under low-Sun conditions. These filters are briefly described in Table 3
in terms of site-dependent parameters. The bounds for the fractions are expressed as
a function F , defined as F (c, f, a; z) = c+ f(cos z)a, with z the solar zenith angle and
S0 = 1361W/m2 the long-term average solar irradiance (solar constant) at the top
of the atmosphere (TOA). Their coefficients values and the detailed results for each
filter at each site are reported in Laguarda et al (2024).

The results of the filtering procedure can be read from the last column in Table 2,
where the % of the high Sun records (αs > 7◦) that pass the filtering procedure
is indicated for each site. The best data is from Golden, Colorado (a site from the

Table 3 Summary of filters applied to the data.

description condition for valid record

solar altitude threshold αs > 7◦

GHI bounds (BSRN) c1 ≤ GHI/S0 ≤ F (c2, f2, a2; z)
UV-E fraction bounds F (c1, f1, a1; z) ≤ 10× UV-E/GHI ≤ F (c2, f2, a2; z)
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National Renewable Energy Laboratory, NREL) with 99% of high Sun records passing
the filters. The worst case is from the site at Pilar, Cordoba, Argentina, with 10%
of the records being discarded. As a result of this procedure, more than 274000 10-
minute records from a three-year period at these sites are available for the assessment
of the PM, Eq. (3).

2.3.2 Clearness index distributions

The clearness index, defined in Eq. (4), is an indicator of cloud cover and atmospheric
transparency, with lower values typically associated with full cloud cover and higher
values corresponding to clear-sky conditions. Fig. 2 presents the histograms of kt for
the four study sites, illustrating the distribution of clear-sky and cloudy conditions in
each of them. These distributions provide insight into the predominant atmospheric
conditions at each location, which must be similar in order to use an average model
successfully. They also provide context for defining categories (Subsection 2.4) and for
the assessment of the model’s performance under different sky conditions (Section 3).

In all cases, samples corresponding to clear-sky conditions (high kt) are grouped
around a peak in the 0.70–0.85 range. The histograms for GCO and GWN are slightly
bi-modal, with a secondary broad peak in the 0.10–0.30 range, associated to overcast
conditions, more frequent at these sites. Except for GWN, the most probable value (at
high kt) includes more than 8% of the samples. In the case of GWN, this is below 6%
of the samples, indicating that at this site cloudy conditions are indeed more frequent.
Despite these small differences in cloudiness frequency, all four sites exhibit similar kt
distributions, particularly in the clear-sky range.

2.3.3 Ozone information (MERRA-2)

As mentioned in Section 1, stratospheric ozone plays an important role in the at-
tenuation of UV-E irradiance (in particular, its UV-B component) and it must be
considered as a relevant variable for UV-E estimation. In this work, the total ozone
column, [O3] from MERRA-2 (Gelaro et al, 2017) is used at each site. This database
provides global ozone estimates (among several meteorological variables) using the
Global Earth Observing System Version-5 (GEOS-5) numerical atmospheric model.
This dataset offers hourly values covering a long-term period from 1980 to the present
without gaps. It has a spatial resolution of 0.5◦ × 0.625◦ (latitude, longitude) or (ap-
proximately) 50 × 50 km cells. Although satellite-based ozone datasets, such as from
Moderate Resolution Imaging Spectroradiometer (MODIS), could also be used, their
lower temporal resolution (one sample per day) introduces limitations. MERRA-2 was
chosen for its higher temporal resolution and continuous data availability.

The integration of several series of satellite-based ozone observations into MERRA-
2’s reanalysis is achieved through the GEOS-5 (Goddard Earth Observing System,
Version 5) data assimilation system (Rienecker et al, 2008) which combines them
with model simulations to produce consistent and accurate hourly estimates of both
total column ozone and vertical ozone profiles. In recent work (Laguarda and Osorio,
2025) the ozone estimates (monthly averages) where compared to long-term Dobson
measurements at two sites in the target area of this work (Salto and Buenos Aires).
The results for the LES site, based on 147 months of measurements, show a small
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Figure 2 Probability density histograms with 50 bins for the clearness index (kt) at each site:
(a) LES, (b) GCO, (c) GWN and (d) PIL.

bias (rMBD) of 1.5% and a dispersion (rRMBD) of 2.0 % relative to the long term
average of 273 DU. The average yearly cycle of [O3] shows a minimum of 260 DU at
the end of summer (March in the Southern Hemisphere) and a maximum of about
300 DU in Spring (September in the Southern Hemisphere), simultaneous with the
seasonal ozone depletion at higher southern latitudes, see Laguarda and Osorio (2025)
for a detailed assessment of seasonal variations of the total ozone concentration over
Southeastern South America.

For each site listed in Table 2, the hourly information for ozone from MERRA-2
(in DU) for the years 2018-2021 has been linearly interpolated to 10-minute intervals
for its use as an input variable to the PM.

2.4 Categories for detailed analysis
The data is classified into three categories based on Sun elevation (or, equivalently, air
mass), and three categories describing cloud cover conditions. Additionally, a separate
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category for high irradiance conditions is considered. Performance indicators are then
evaluated for each category.

Instead of using directly the solar altitude angle, αs, the hour angle, ω, at the mid
point of each 10-min data record is used to classify records into three groups: Noon-
within 30 minutes of solar noon (ω = 0), HS- within 90 minutes of solar noon, and
MS- more than 90 minutes away from solar noon. Since the hour angle changes at
the fixed rate of 15 ◦/hour, the classification criteria for proximity to Solar noon (as a
proxy for Sun elevation or air mass) are listed in the first three rows of Table 4. Note
that the Noon category is included in HS, and the MS category includes records with
|ω| > 22.5◦ and αs > 7◦, since low Sun conditions are excluded from the analysis in
the quality control procedure (Table 3). Fig. 3 shows the kt histograms for the MS
and HS solar elevation categories for one site. The HS category, panel (a), includes
some cloudy conditions and, conversely, the MS one, panel (b), still includes clear-sky
conditions in a well defined peak at kt ≈ 0.75.

Figure 3 kt histograms by solar elevation category for the LES site, expressed in raw counts. (a)
MS category and (b) HS category.

Cloudiness is the main factor affecting solar irradiance at ground level and the
clearness index kt is a convenient indicator for cloudiness. As Fig. 2 shows, the main
peak (mostly clear skies) takes place at values above kt > 0.70. The selection of a
threshold for completely covered skies is not so obvious, because the secondary peak
is not well defined at some sites. However, values kt < 0.20 are usually associated
to full cloud cover. We choose these boundaries as reasonable options for these sites,
keeping in mind that a slightly different choice will not affect the results significantly2.
A kt histogram colored by cloudiness category is shown in Fig. 4 for one site, as an

2We have checked this, by using (0.25 and 0.65) as kt boundaries. This affects the numbers slightly, but
not the qualitative conclusions that can be drawn from them.
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Table 4 Categories used to analyze the detailed model’s performance in terms of the solar hour
angle (ω) and clearness index (kt).

category condition characteristic

Noon |ω| < 7.5◦ within 30 min. of solar noon
High αs (HS) |ω| ≤ 22.5◦ within 90 min. of solar noon
Medium αs (MS) |ω| > 22.5◦ more than 90 min. away from solar noon

FC kt < 0.25 mostly complete cloud cover
PC 0.25 ≤ kt ≤ 0.70 partial cloud cover
CS kt > 0.70 mostly clear sky

HI CS & Noon & Summer High irradiance conditions

example. This categorization by cloudiness includes records close and away from solar
noon, but separates the clear-sky peak from the other sky conditions.

Figure 4 kt histograms by cloudiness category for the LES site, expressed in raw counts.

As mentioned previously, the long-term objective of this work is to generate reli-
able statistical information on extreme values of UV-E and estimate the dosage for
different exposure times within the context of its impact on human health. In particu-
lar, the suitability of the PM to be used with satellite-based GHI estimates (Laguarda
et al, 2020) with high accuracy and large spatial coverage to generate maps of UV-E
with expected maximal dosage over the target territory is of interest. For these ap-
plication, the performance of the UV-E model under maximum irradiance conditions
is particularly relevant. Thus, an additional category for High Irradiance conditions
(HI) is defined as follows:
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• Summer months (in a broad sense): December to March for LES and PIL sites and
June to September for GCO and GWN sites.

• Noon records (i.e. those within 30 min of solar noon).
• Clear sky records in the CS category (kt > 0.70).

as described in compact form in the last row of Table 4. In order to provide further
insight into these categories, the averages and standard deviations of selected variables
are provided in in Table A1 and Table A2 for the LES site. These categories will prove
to be useful to analyze the performance of UV-E estimates from Eq. (3).

Figure 5 Simplified flowchart describing the methodology applied at each site.

The methodology described in this Section is outlined in the flowchart diagram
presented in Fig. 5. For each site, raw data at 1-min intervals for solar irradiance (GHI,
UV-E) are averaged to 10-min intervals, auxiliary variables such as air mass, solar
altitude angle and clearness index are calculated and quality control filters are applied.
Total Ozone information from MERRA-2 at 1 hour time steps is linearly interpolated
to 10-min intervals. Data at 10-min intervals is used to evaluate the PM estimates and
N pairs (ŷ, y corresponding to the measured UV-E and its PM estimate are formed.
These pairs are categorized according to clearness index and solar altitude (in the
particular case of the HI category, the day of year is also relevant). Performance metrics
are calculated for each subcategory pair and a graphical representation is displayed.
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3 Results and Discussion
In this section, the performance analysis results for the PM are presented. Since
the average irradiance varies significantly across the different categories representing
solar altitude and cloud conditions (see Table A1 and Table A2), absolute metrics
such as MBD and RMSD, while useful for inter-site comparisons, are not suitable for
comparisons between different categories at the same site. Thus, to facilitate meaning-
ful comparisons between categories, relative metrics (expressed as percentages of the
mean measurements for the category) are also used. This dual approach allows for a
clearer assessment of model performance across different sites and varying atmospheric
conditions.

3.1 General Performance Overview
The overall performance indicators for the average PM, Eq. (3), at the four sites listed
in Table 2 were previously evaluated (Laguarda et al, 2024) and are summarized in
Table 5, as they provide the context for the more detailed analysis presented below.

Table 5 Performance indicators (absolute and relative) for UV-E estimates from Eq. (3) with
MERRA-2 ozone inputs and average coeficients, adapted from Ref. Laguarda et al (2024). The last
row shows the average of the measurements used as a reference for the relative values. The last
column shows the mean values across sites.

LES GWN GCO PIL Mean
mW/m2 % mW/m2 % mW/m2 % mW/m2 % mW/m2 %

MBD -2.7 -3.0 -1.3 -1.9 3.8 5.4 3.0 3.5 8.5 1.1
RMSD 9.1 10.3 8.0 11.8 7.9 11.3 7.4 8.8 8.3 10.7

KSI 5.9 6.7 4.1 6.0 1.6 2.3 3.7 4.4 3.7 4.7

<UV-E> 88.6 67.7 69.8 84.3 77.7

The MBD ranges from −3mW/m2 (under-estimation) to 4mW/m2 (over-
estimation) and the RMSD remains below 10 mW/m2, indicating reasonable accuracy.
As a reference, the typical uncertainty is below 12%. These are good performance in-
dicators, considering that the corresponding uncertainty for a good field GHI ground
measurement is about 5% of the average. As expected, these UV-E estimates derived
from local measurements and locally adjusted models are more accurate than the
global satellite-based estimates from RTM calculations discussed in Subsection 1.1.

These indicators provide a general performance overview but they can also be
misleading. For example, a scatter plot of the estimated UV-E irradiance vs. measure-
ments for the LES site (Fig. 6(a)) shows that the model overestimates UV-E at high
irradiances, yet the overall bias is negative (-3.0%), indicating that there are negative
biases at other conditions which overcome the positive bias at high UV-E. The opposite
occurs with GCO, with an underestimation for high UV-E values evident in Fig. 6(b)
with an overall rMBD of +5.4% indicating the predominance of overestimation. Since
high UV-E conditions can result from either clear skies or high Sun elevations under
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Figure 6 Scatter plots for estimated UV-E from Eq. (3) vs measured for each site: (a) LES; (b)
GCO; (c) GWN and (d) PIL. The same average model was used for all sites. The red line corresponds
to a perfect match.

partial cloudiness, it is crucial to analyze the model’s behavior across different atmo-
spheric conditions. Understanding how specific factors contribute to dispersion and
bias will provide insight into its suitability for long-term regional applications.

3.2 Performance breakdown with solar altitude or cloudiness
When the data is categorized by solar altitude or cloudiness, the corresponding MBD
and RMSD results are shown in Fig. 7. The blue bars represent the uncategorized
data, shown as a reference.

The average model considered here is based on a unique set of coefficients and
is therefore not unbiased. The model shows overall overestimation (positive bias) at
GWN an PIL and underestimation (negative bias) at LES and GCO. Absolute biases
are consistently larger across sites under Noon or HS conditions. Two sites (GWN,
PIL) show high positive biases under clear skies (CS), but the other two have either
small negative or negligible bias under the same conditions, so general conclusions
cannot be drawn.
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Figure 7 Absolute performance indicators, in mW/m2, for categorized data. (a) Solar altitude
categories and (b) Cloudiness categories.

Overall, dispersion, as measured by the RMSD, is greater under Noon and clear-sky
conditions. However, this increased dispersion is only seen with absolute performance
metrics since the average UV-E is higher in these categories, which contributes to
larger dispersion values. Table A4 includes the same performance indicators in relative
terms and in that case, rRMSD is lowest for the HS and Noon categories across sites.

To explore this matter further, the relative metrics (expressed as percentages of
the mean measurements for each category) in Table A4 are presented as circular
diagrams (Taylor, 2001) in Figs. 8 and 9, offering a more comprehensive visualization.
All the performance indicators are expressed in relative terms as a percentage of
the mean UV-E irradiance measurement for each category (listed in the last row of
Tables A1 to A3). These diagrams show the standard deviations of the residuals (σr)

vs. the rMBD and the distance of each point to the origin is rRMSD =
√

rMBD2 + σ2
r ,

according to Eq. (7). The origin (0,0) represents a perfect agreement between model
and measurements and an unbiased model would be on the vertical axis.

In these diagrams, each site is represented by a geometric symbol and the different
categories are represented by the usual color code (the ALL category is included in
blue as a reference for overall performance). Fig. 8 presents the relative metrics for
solar height categories. For MS conditions, biases exhibit variable signs, ranging from
-7.7% (LES) to +6.0% (GWN), while the variability (as represented by σr) spans
from 9,1% (PIL) to 12.9% (GCO). As solar elevation increases, the behavior changes.
Under HS conditions, biases tend to be positive and remain below 4.8%, except for
GCO, which shows a negative bias of -2.9%. Meanwhile, dispersion decreases to values
between 5.7% (PIL) and 9.2% (GCO). Specifically at Noon, biases are similar to those
observed under HS conditions, while dispersions are slightly lower, ranging from 5.6%
to 9.0%.
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Figure 8 Circular diagrams showing the relative standard deviation of the residuals vs. rMBD for
each solar altitude category and site. The dashed circles represent the rRMSD at 5% intervals.The
High Irradiance category (HI) (Subsection 3.4) is also included (black symbols) for the LES site as
filled (average PM) or unfilled (local PM) circles.

In Fig. 9 the corresponding results are shown according to cloudiness conditions.
Under overcast conditions (FC), biases range from -8.8% (LES) to +7.7% (GWN),
while relative dispersions are high, reaching 28.0% at GWN. For the partially cloudy
(PC) category, absolute biases decrease, ranging between -9.0% and +4.2%, while dis-
persion also decreases, with values between 11.6% and 15.8% (GCO). Finally, under
clear sky (CS), relative biases range from -1.7% (GCO) to +6.1% (GWN) and disper-
sions are the smallest, in the range of 5.0% to 9.0%. Overall, the relative dispersion
tends to decrease as solar height increases (Fig. 8) or cloudiness decreases (Fig. 9).

These results are presented in detailed form in Table A4. They complement the
findings presented in Fig. 7 in terms of absolute metrics. There, it is evident that
under high irradiance conditions (whether due to clear skies or high solar elevation)
the absolute metrics tend to increase. However, they increase at a lower rate than the
average irradiance, resulting in lower relative metrics for these categories, as discussed.

3.3 Two-dimensional analysis
The relative performance indicators obtained by simultaneously varying Sun elevation
and cloudiness categories are presented for each site in Table A4. For this graphical
representation, the solar altitude angle and the clearness index are subdivided into 10
bins each, generating 10×10 matrices for each performance indicator. Fig. 10 displays
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Figure 9 Circular diagrams showing the relative standard deviation of the residuals vs. rMBD for
each cloudiness category and site. The dashed circles represent the rRMSD at 5% intervals. The High
Irradiance category (HI) (Subsection 3.4) is also included (black symbols) for the LES site as filled
(average PM) or unfilled (local PM) circles.

the rMBD and rRMSD matrices for two representative sites, LES and GCO. Each
metric in a given bin is expressed as a percentage of the corresponding measurements
average, which is shown in the rightmost column of Fig. 10.

This figure highlights distinct performance patterns associated with sky conditions
(kt) and the sine of the solar altitude angle. The plots in the rightmost column depict
an expected trend, showing that the average UV-E irradiance increases with higher
solar altitude (high sinαs) and clearer sky conditions (high kt).

As the first column shows, the rMBD is low under high Sun conditions except for
full cloud cover. The second column shows the rRMSD indicator (dark blue is lowest).
For high Sun conditions and particularly under clear skies, this indicator is lowest.
Thus, the model represents UV-E irradiance most reliably under clear-sky conditions.

In contrast, under cloudy conditions, the model exhibits the larger biases (with
signs that are site-dependent) and the largest dispersions, reflecting the inherent
challenges of accurately modeling UV-E when clouds introduce variability through a
complex attenuation of the incident solar irradiance. This is observed across all solar
altitudes. At solar noon, particularly under partially cloudy skies, the model shows
medium to high dispersions. This increased variability can be attributed to rapid
changes in cloud cover coupled with high solar altitudes, which impact the accuracy
of the global irradiance estimates.
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Figure 10 Breakdown of performance indicators (rMBD and rRMSD expressed in %) in 10×10 bins
of sin(αs) and clearness index. The panels in the last column indicate the measurements average in
each bin, used to calculate relative metrics of the first two columns. The first row corresponds to the
LES site and the second to GCO.

This analysis suggests that the PM is capable of estimating UV-E with good ac-
curacy, particularly under clear sky conditions, and highlights its limitations under
partial or full cloud cover, especially close to solar noon.

3.4 High Irradiance conditions (HI)
The number of records per site and the average values of selected variables within
the High Irradiance conditions (HI) category, defined in Subsection 2.4, are shown in
Table A3, together with the average values of relevant variables and their standard
deviations. The corresponding performance indicators for this HI category are shown
in Table 6.

The relative mean bias deviation (rMBD) has site-specific values ranging from a
+6.5% overestimation at LES to a -1.8% (underestimation) at GWN. This variabil-
ity represents an obstacle when applying the average model coefficients to different
locations and highlights the impact of local atmospheric characteristics on the accu-
racy, even under clear skies and at solar noon. The model performs consistently well
at GCO and PIL, with smaller biases indicating reliable maximum UV-E estimates
during high UV irradiance in summer.

Relative root mean square deviation values show low overall dispersions, averag-
ing 5.9% of the average of the measurements. LES and GWN have higher (but still
acceptable) rRMSD values around 8% while GCO and PIL exhibit lower dispersions
around 4%, indicating a very good agreement. The relative KSI, which averages 3.1%
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Table 6 Relative performance indicators data the HI category, expressed as
% of the average of the corresponding UV-E measurements (listed in
Table A3). The first column corresponds to the locally adjusted (unbiased)
model for the LES site (coefficients from the second row of Table 1). The last
column shows the average performance indicators of the average model across
sites as a % of the overall UV-E average, 246.9mW/m2.

metric LES (local) LES GWN GCO PIL average

rMBD (%) 0.0 6.5 -1.8 0.8 2.0 2.4
rRMSD (%) 3.2 7.6 8.1 4.4 3.8 5.9

σr (%) 3.2 3.9 7.9 4.3 3.2 5.4
rKSI (%) 0.4 6.4 2.1 1.7 2.0 3.1

across sites, also indicates a good statistical similarity between the PM estimates and
measurements. The performance indicators for the HI category have been included in
the circular diagrams, Figs. 8 and 9 (black symbols) to show them in the context of
the other categories. It is easily visualized that the HI conditions (clear sky, high Sun
and summer) lead to the PM best performance.

Non-negligible mean biases are to be expected from an average model, but they
represent a particular challenge for the characterization of UV-E over climatological
time scales, since they are not reduced by averaging or aggregation of the data. This
can be solved by adjusting the coefficients to each site to obtain an unbiased version
of the PM. The first column in Table 6 shows the performance indicators for the local
(unbiased) PM at LES, in order to analyze the effect using a locally adjusted model.
Fig. 11 shows the scatter plots for the average and unbiased versions of PM at the
LES site which visually show the effect of local adjustment. The performance of the
local model for the LES site is also shown in the circular diagrams, Figs. 8 and 9, as
an unfilled black circle which shows the model is unbiased and has the smallest σr and
rRMSD.

These findings confirm the model’s strong performance under clear, high-sun con-
ditions, while highlighting areas for refinement to enhance consistency and reduce
variability for broader applicability. The performance of the unbiased model is im-
pressive (second column of the Table 6), considering that the typical error in a field
UV-E measurement is between 5 and 10% of the average of a set of measurements,
depending on the quality and maintenance schedule of the instrument.

4 Conclusions
The use of a power model for estimating erythemal UV irradiance from global hori-
zontal irradiance, relative air mass, and ozone column data is assessed under different
atmospheric conditions. Total atmospheric ozone estimates from a reanalysis database
(MERRA-2) where used. These results complement previous work in which the empir-
ical coefficients of PM were determined using data from four mid-latitude temperate
sites in North and South America and its overall accuracy was analyzed. This first
assessment showed low biases (rMBD) ranging from -3.0% to +5.4% and dispersions
(rRMSD) below 12%, in both cases relative to the mean of the measurements. Build-
ing on that work, this study extends the performance assessment by evaluating the
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Figure 11 Scatter plot for UV-E records in the HI category at the LES site (1178 data records).
In blue, the average PM, and in red, the unbiased (local) model. The corresponding performance
indicators are listed in the first two columns of Table 6.

average model (i.e. a single set of average coefficients is used at all sites) performance
under different solar altitudes, cloudiness conditions and Ozone concentrations, of-
fering detailed insights into its strengths and limitations under diverse atmospheric
scenarios.

The analysis of the model’s performance across solar time shows a good agreement
with the measurements under high solar altitudes and near-noon conditions, with mean
biases between -3 % and +5 % and dispersions between 6 % and 9 %. At medium
solar altitudes, biases vary more (from -7.7% to +6.0%) and dispersions are larger
(9-13%). These results show the model’s accuracy under high-sun conditions, most
important for exposure risk assessments, while highlighting its limitations under lower
solar altitudes.

Regarding cloud conditions, as indicated by the clearness index, the model has bet-
ter accuracy under clear skies, with biases ranging from -2% to +6% and dispersions
in the 5-9 % range. For partially cloudy conditions, biases remain moderate (-9 % to
+4 %), but dispersions increase at some sites. The performance decreases under over-
cast conditions, where biases become larger (-9 % to +8 %) and dispersions exceed
20%. Part of this is an artifact of expressing relative indicators relative to the mea-
surement average, which is lower under cloudy skies. However, there are challenges for
accurate modeling UV-E under variable or high cloud cover conditions, since ground
albedo, multiple reflections and other complex attenuation effects are only partially
accounted for by the current parametrization.

High irradiance conditions where particularly investigated due to their relevance for
parameters such as maximum daily UV index or daily UV-E doses, which are of interest
for health-related applications. High irradiance conditions (HI) are defined here as
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solar noon under clear skies during summer months (i.e. the highest solar altitudes).
Within this category, the model performs best, showing a strong agreement between
estimates and measurements with an average rMBD of 2.4% and rRMSD of 5.9%
averaged accross sites. Site-specific analyses reveal local variations, such as a higher
positive bias at one site (LES, +6.5%) and a slight underestimation at another (GWN,
-1.8%). These discrepancies highlight the impact of local atmospheric characteristics
on the model accuracy, due to the use of a single set of coefficients at all sites. Regarding
dispersion, it was higher at LES and GWN compared to GCO and PIL, where the
model performed more accurately. The relative KSI supports these findings, showing
a good statistical agreement between measured and modeled UV-E distributions.

As a test of maximum potential accuracy, an unbiased version of the model (i.e.
with locally adjusted coefficients) showed an rRMSD of only 3.2% under HI conditions,
which is similar than the typical error associated to field UV instruments. In view of
these results, when the model is applied to calculate long-term (several years) doses
or cumulative values, it is strongly recommended to employ an unbiased version with
locally adapted empirical parameters.

These findings represent a firm basis for the generation of reliable UV-E datasets
for long-term climatological analyses, including extreme UV-E values and cumulative
daily dose estimations. Very good accuracy can be obtained at specific sites for which
a set of (GHI, UV-E) measurements are available using an unbiased version of the
model. The average version of the model, when used with satellite-derived GHI and
ozone column from global databases, can provide good UV-E estimates over broad
geographical regions.

Appendix A Auxiliary information
The data was categorized into either solar altitude (MS, HS and Noon) or clearness
index (FC, PC, CS) categories, as defined in Table 4. To provide context, the Table A1
lists the average and standard deviations of selected variables within each solar eleva-
tion category for LES site, while Table A2 presents the same variables for cloudiness
categories. The standard deviations give an indication of the spread of each variable
within its respective category.

Although the average clearness index remains nearly constant across solar elevation
categories, the average UV-E varies significantly. In contrast, cloudiness categories
exhibit visible differences in average kt values. The first column of Table A1, which
corresponds to the uncategorized datasets, is repeated in Table A2 for clarity. Similar
patterns are observed at the other sites. The average of the UV-E measurements can
be very different between categories or between sites.

When the performance of the model from Eq. (3) is evaluated varying both the
solar altitude and cloudiness categories, 4×4 matrices of performance indicators are
obtained for each site for each metric. The rMBD and rMBD are shown together
with the standard deviation of the residuals, σr, calculated from Eq. (7). A graphical
representation of this information is shown (in absolute terms) in Fig. 10 for the LES
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Table A1 Average and standard deviations of selected variables in the solar
elevation categories for the LES site. Refer to Table 4 for category definitions.

solar elevation cat. → All Noon HS MS

abs. hour angle, |ω| (◦) 40.3± 24.2 3.8± 2.2 11.2± 6.5 52.0± 18.2
solar altitude, αs (◦) 37.4± 18.5 56.5± 16.3 54.2± 15.4 30.7± 15.0
relative air mass, m 2.2± 1.4 1.3± 0.3 1.3± 0.3 2.6± 1.5
clearness index, kt 0.6± 0.2 0.6± 0.2 0.6± 0.2 0.5± 0.2
meas. UV-E, mW/m2 88.6± 75.7 151.6± 84.7 144.8± 82.4 66.2± 59.5

# records 59026 5623 16842 42184

Table A2 Average and standard deviations of selected variables in the cloudiness
categories for the LES site. Refer to Table 4 for category definitions.

cloudiness cat. → All CS PC FC

abs. hour angle, |ω| (◦) 40.3± 24.2 29.7± 18.5 49.1± 25.1 41.8± 24.0
solar altitude, αs (◦) 37.4± 18.5 46.6± 15.3 30.6± 17.8 33.7± 17.8
relative air mass, m 2.2± 1.4 1.5± 0.5 2.7± 1.6 2.4± 1.5

clearness index, kt 0.6± 0.2 0.8± 0.01 0.5± 0.1 0.1± 0.1

meas. UV-E, mW/m2 88.6± 75.7 146.9± 71.5 61.7± 54.5 23.8± 20.7
# records 59026 23008 26198 9820

1The standard deviation of clear-sky kt is 0.04.

Table A3 Average and standard deviations of selected variables for the High
Irradiance (HI) category at each site.

LES GCO GWN PIL

solar altitude (◦) 71.1± 8.4 63.3± 8.4 68.9± 8.4 73.8± 8.0
air mass 1.07± 0.06 1.14± 0.09 1.09± 0.07 1.05± 0.06
clearness index 0.79± 0.03 0.80± 0.04 0.77± 0.04 0.78± 0.03

UV-E (mW/m2) 258.0± 30.0 223.5± 37.6 226.8± 30.5 279.4± 35.4
# records 1178 1670 1230 997

and GCO sites using finer 10 × 10 cells instead of 4 × 4. The relative performance
indicators obtained when varying one category at a time are shown in Figs. 8 and 9.
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