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The ground ultraviolet (UV) solar radiation is relevant due to its impacts on plastics
degradation (mainly UVA) and on human health (UVB and erithemic UV, or UVE). UV
ground measurements are not as ubiquitous as the relatively common global horizontal
irradiance (GHI) measurements. Three simple models that estimate the UVA, UVB, and
UVE components of solar irradiance from GHI and ozone column information are locally
adjusted and validated. Five 1-minute datasets from three sites in southeastern South
America and two in the United States are used for simultaneous solar irradiance and UV
data. All sites correspond to temperate midlatitude regions. Simultaneous atmospheric
total ozone column information is obtained from the reanalysis Modern-Era Retrospective
analysis for Research and Applications (MERRA-2) database for each site. Aside from
locally adjusted models, average models with a single set of coefficients are also evaluated.
For instance, the best average model is able to estimate UVE with a typical uncertainty
below 12% and mean biases between ±3%, relative to the average of the measurements.
Similar results are reported for the UVB and UVA components. These results, which
can be useful in regions with similar climate and geography, provide a simple way to
estimate UV irradiance under all-sky conditions with known uncertainty. This is an
alternative to global satellite-based UV estimates, which can have high uncertainties at
specific locations. Because MERRA-2 information has a global coverage, when coupled
with good satellite-based estimates for GHI, UV irradiances can be estimated by this
method over a large territory.
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1 Introduction
An adequate understanding of the ultraviolet solar radiation

(UV) at the Earth’s surface is important mainly due to its effects on
exposed biological organisms. It can have negative impacts on hu-
man health, inducing sunburns, premature skin aging, eye damage,
and an increased risk of skin cancer [1,2], and these effects depend
on the accumulated dosage. The environment can also be affected
by UV radiation (ecosystem degradation), and it can also cause
economic impacts by degrading exposed materials and equipment
[3]. This is especially applicable to the transparent cover (inclusive
of coatings) and encapsulant of photovoltaic (PV) modules [4].

Solar UV radiation is categorized into sub-bands according to its
effects on biological tissues: UVA (315–400 nm) and UVB (280–
315 nm). The incident UV irradiance (280–400 nm) weighted
by the average human skin response standard spectrum [5,6] is
the erythemic UV or UVE, and it is the basis for the UV index
calculation used for public reports on UV irradiance levels.

The most reliable way to obtain UV information for any sub-
band is based on ground measurements; however, due to the
scarcity of such measurements, it is convenient to have models
with known uncertainties to estimate these components. Surface
UV can be modeled using relevant information retrieved by mete-
orological satellites, such as atmospheric ozone content, aerosols,
and cloud cover, combined with surface reflectivity data. Satellite
observations are particularly useful for this purpose because they
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provide efficient coverage of large geographic areas and almost
near real-time information over long periods.

By using information from these models, it is possible to cap-
ture the spatial distribution and temporal variability of climatic and
meteorological patterns regarding UV. For instance, the UV-Index
Operating System (UVIOS) uses information from the Meteosat
Second Generation and Meteorological Operational Satellite-B to
retrieve near-real-time and short-term forecasting of UV radiation
over Europe at a spatial resolution of 5 km and a temporal res-
olution of 15 minutes [7]. This operational approach, based on
radiative transfer calculations, can provide reasonably accurate UV
estimates. However, it requires substantial computational resources
to handle the large volumes of satellite real-time data, justifying
the need for efficient and scalable modeling techniques.

An efficient alternative approach involves using measured or es-
timated broadband global horizontal irradiance (GHI, in W/m2) as
a basis to estimate UV radiation components. Reliable measure-
ments of GHI are relatively common, and several accurate models
and databases provide GHI estimates from satellite information.
Geostationary satellites provide valuable data on cloudiness, which
significantly impacts solar radiation. GHI models utilize this satel-
lite information, along with other ancillary data, to account for the
effects of clouds and atmospheric conditions on solar radiation. A
common approach involves first estimating GHI under clear sky
conditions and then adjusting for cloud effects using geostation-
ary satellite data [8–10]. Among various alternatives for GHI,
there is the National Renewable Energy Laboratory’s (NREL) Na-
tional Solar Radiation Data Base (NSRDB, [11]), which primarly
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focuses on the Americas, and the Copernicus Atmosphere Moni-
toring Service (CAMS) Radiation Service [12], which relies on the
Heliosat-4 model [9], covering mainly Europe and Africa.

A viable straightforward two-step scheme to estimate UV com-
ponents from satellite information consists of (i) estimating GHI
from a suitable satellite model and (ii) applying a simple parame-
terization to transform GHI to UV irradiance in the corresponding
sub-band. This involves adding ozone information. In this work,
we focus on the second step of this procedure, using GHI measure-
ments instead of satellite-based estimates to assess several simple
parametrizations for each UV band. As a result, we obtain an ac-
curate and fast method for estimating each UV component from
GHI and ozone total content information obtained from a publicly
available source.

In this context, a relevant dimensionless quantity is the UV
fraction for each sub-band, shown in Eq. (1):

𝑓𝐴 =
𝑈𝑉𝐴

𝐺𝐻𝐼
, 𝑓𝐵 =

𝑈𝑉𝐵

𝐺𝐻𝐼
and 𝑓𝐸 =

𝑈𝑉𝐸

𝐺𝐻𝐼
. (1)

The UV fractions are most sensitive to variations in the solar
altitude (or relative air mass), cloudiness, and stratospheric ozone
content in the case of the shorter wavelengths. In a previous work
[13], several models for the UV fractions were tested against a
limited ground data set. Among these, the power model (PM),
shown in Eq. (2), stood out for its simplicity and good accuracy
for all UV bands. The main objective of this work is to train
and assess the performance of the PM parametrization, with a
focus on the 𝑓𝐵 and 𝑓𝐸 fractions. For clarity, results for the UVA
fraction are included in Appendix A. In this work, a greater amount
of quality simultaneous UV and GHI data (five sites, covering a
greater portion of the subtropical American continent) is used,
and all data are resampled at the 10-minute level, which is the
time step used by the Geostationary Operational Environmental
Satellites (GOES) that have observed this region since 2018. For
comparison, a polynomial model based on the one used by NREL is
also included (named NP in this work). The original NP model for
UV fraction [14] is a fourth-order polynomial in air mass obtained
as a result of radiative transfer simulations, specifically designed
for total UV radiation (280–400 nm). It focuses on the full UV
range, instead of specific ranges like UVA or UVB like this work,
because it is related to the UV radiation exposure for PV materials.

In this work, we consider an extended version of the polynomial
model for each UV band, incorporating ozone as a predictor, as
shown in Eq. (3). Ozone strongly absorbs shortwave ultraviolet
radiation up to about 320 nm, mainly in the Hartley and Huggins
bands, and has a negligible effect on the UVA sub-band [15]. In
Figure 1, the ozone absorption cross-section in the UV spectrum
is shown. The Hartley and Huggins bands significantly contribute
to the absorption of solar UV radiation, particularly in the UVB
and UVE ranges. Therefore, the 𝑓𝐵 and 𝑓𝐸 models must consider
ozone [13]. As a baseline model, a constant UV fraction, Eq. (4),
is also adjusted and tested.

Power model (PM):

𝑓𝑋 = 𝑎0 𝑘
𝑎1
𝑡 × 𝑚𝑎2 × [𝑂3]𝑎3 , (2)

Polynomial model (NP):

𝑓𝑋 = 𝑏0 + 𝑏1𝑚 + 𝑏2𝑚
2 + 𝑏3𝑚

3 + 𝑏4𝑚
4 + 𝑏5 [𝑂3] + 𝑏6 [𝑂3]2, (3)

Constant model (CT):

𝑓𝑋 = 𝑐0. (4)

where X stands for each sub-band (A, B, E), 𝑘𝑡 = 𝐺𝐻𝐼/𝑆0 cos(𝑧)
is the clearness index (a normalized version of GHI with 𝑆0 the
solar irradiance at the top of the atmosphere and 𝑧 the solar zenith
angle), and [𝑂3] is the ozone column in Dobson units (DU). Since

Ozone dependence is not expected to be relevant for the UVA
band, versions of NP and PM without this dependence are also
considered and labeled NP0 (𝑏5 = 𝑏6 = 0) and PM0 (𝑎3 = 0),
respectively.

In order to adjust the models to local data, representative sets
of GHI and UVX pairs are required. In addition, the estimation of
UVB and UVE requires simultaneous Ozone column information
at each site. Five sites with different climates are used, as described
in the next Section. The spatial variability of the locally adjusted
coefficients is important. If it is low, an average model with a
single set of coefficients may be useful to provide UV information
over sites with similar climatic characteristics, so this possibility
will also investigated.

Fig. 1 Ozone absorption cross-sections spectrum at
293 K, presented on a logarithmic scale. The Hartley and
Huggins bands are indicated. Adapted from [16]

2 Information base
2.1 Ground measurements. To validate and train the pro-

posed models, measurements at ground level from five different
places are used. The five measurement sites are located in sub-
tropical climates in South and North America. Table 1 presents
the detailed locations, the reference codes used, and their Köppen
Geiger climate classifications [17]. At all sites, GHI is simultane-
ously measured along with at least one component of UV radiation.
The instrumentation used, the frequency of recorded measurements
and the period of measurement are listed in Table 2.

Periodic maintenance, including calibration of the instruments,
is the responsability of the operators at each site listed in Table 1.
At LES (Laboratorio de Energía Solar, Uruguay http:les.edu.uy)
the GHI instruments are calibrated at the laboratory at 2-year inter-
vals with technical trazability to the World Radiometric Reference
(WRR) in PMOD, Switzerland. The UV instrument participated in
a international intercomparison held by the World Meteorological
Organization (WMO) at Buenos Aires, Argentina in 2018. The
ATM site is run by INUMET, the national meteorological service
from Uruguay. Both instruments at this site where new had fac-
tory calibrations from 2019. The GCO site is part of the Baseline
Measurement System (BMS) of the NREL experimental facility in
Golden, Colorado [18], with instruments calibrated at 1-year in-
tervals2. The GWN site is part of the Surface Radiation Budget

2As detailed in https://midcdmz.nrel.gov/apps/html.pl?site=BMS;page=
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Table 1 Measurement sites-information, including updated Köppen Geiger climate classification [17].
Site location Code Operator Lat (◦) Lon (◦) Alt (m) Climate
Salto, Uruguay LES LES -31.28 -57.92 56 Cfa
Atlántida, Uruguay ATM INUMET -34.78 -55.75 11 Cfa
Golden, Colorado, USA GCO NREL-BMS +39.74 -105.18 1829 Dfb
Goodwin Creek, Mississippi, USA GWN SURFRAD +34.25 -89.87 98 Cfa
Pilar, Córdoba, Argentina PIL SAVER-NET -31.68 -63.87 330 Cfa/Cwa

(SURFRAD) network operated by the National Oceanic and At-
mospheric Administration (NOAA)3. The PIL site is maintained
by the SAVER-NET network4, a tri-national colaboration between
Argentina, Chile and Japan that maintains measurements of UV
global irradiance at various locations. PIL is located near the city
of Cordoba, Argentina, and it was selected for this work because
it had a good local maintenance schedule. Both instruments at
this site had factory calibrations from 2018 and participated in the
WMO sponsored international intercomparison at Buenos Aires,
Argentina in 2018.

2.2 Quality control of ground measurements. The next step
in this project is to use the best UV models to estimate UVX from
satellite-based GHI over mid-latitudes over America, so we select
a time step of 10 minutes because this is the frequency of the
geostationary satellite images (currently GOES-16). As a first step,
all 1-min ground data are averaged to 10-minute intervals.

For training and validating the models, it is necessary to use
well-behaved, typical data and exclude as much as possible infre-
quent, atypical measurements. A quality control procedure was
applied to the ground GHI and UV measurements to filter extreme
values. We refer the reader to Appendix B for the details of the ap-
plied filters and their results on each site and data pair (GHI, UVA;
GHI, UVB; and GHI, UVE). The filters for GHI imply lower and
upper bounds as recommended by the Baseline Surface Radiation
Network (BSRN) [19]. Filters for UV are reasonable bounds for
these variables, as discussed in Appendix B. Typical UVE fractions
tend to decrease with air mass and increase with solar irradiance,
as shown in Figure 2. Lower and upper bounds also applied to UV
fractions, as described in Appendix B. The results of the filtering
procedure are summarized in Table 3, for each site and the relevant
variable pair. The initial records are those with solar altitudes, 𝛼𝑠 ,
greater than 7◦, thus excluding measurements with high air masses
and low sun altitudes, for which directional (cosine) errors can
be large. Finally, only complete data pairs are listed in Table 3
because these are required for training and evaluating the models.

As Table 3 shows, less than 5% of the the available high sun
records are discarded at each site by the quality control procedures
detailed in Appendix B.

2.3 Ozone information. The ozone present in the strato-
sphere plays an important role in the attenuation of the lower wave-
lengths of the solar spectrum, as stated before and shown in Fig-
ure 1. In this work, the total ozone column, [𝑂3], in Dobson units
(DU), is used as one of the predictors for these UV fractions. This
information is obtained from the National Aeronautics and Space
Administration’s Modern-Era Retrospective analysis for Research
and Applications (MERRA-2) reanalysis database [20], based on
the Global Earth Observing System Version-5 (GEOS-5) numeric
atmospheric model. It provides a wide spectrum of meteorological
variables over the entire globe at hourly steps, from 1980–present,
with a spatial resolution of 0.5◦ × 0.625◦. Due to its construc-
tion, it does not present temporal or spatial gaps, which makes it
suitable as input for a UV-based radiation satellite model. In [21],
daily averages of MERRA-2 ozone estimates were compared with
spectrophotometer-based ozone ground measurements for one site

instruments.
3See https://gml.noaa.gov/grad/surfrad/, last accessed August 23, 2023.
4/http://www.savernet-satreps.org/en/#proyecto

(a) Dependence on air mass

(b) Dependence on clearness index

Fig. 2 UVE fraction data for the GCO site. The color de-
notes the ozone content in Dobson units. As shown, the
greater the ozone content, the lower the fE .

in Uruguay over several years. A good performance with rMBD
of +2.0% and a rRMSD of 2.4% was found. The hourly informa-
tion ensures that the short-term variations in ozone concentration
are accurately captured, providing more precise inputs for the UV
model. Finally, ozone has been linearly interpolated to 10-minute
intervals for use in this work.

3 Methodology
The nontrivial UVB and UVE fraction models, Eqs. (2) and

(3), use air mass, 𝑚, clearness index, 𝑘𝑡 (defined below), and
the ozone concentration, [𝑂3], as predictors. These predictors
account for the sun’s beam path length across the atmosphere,
cloudiness, and ozone column, respectively. The air mass depends
on the apparent sun position and is calculated from the time tag and
location at the center of the 10-minute interval using the expression
provided by [22]. In essence, this geometric variable describes the
ratio between the actual optical path of the solar beam and the
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Table 2 Measurements and instruments available at each site. KZ stands for the Kipp & Zonen instrument manufac-
turer. The last columns show the time interval between recorded measurements and the time period over which the
data was measured. The site codes and operators are listed in Table 1.

Site GHI UVA UVB UVE Frequency (min−1) Period
LES KZ CMP10 KZ UVS-A-E - KZ UVS-A-E 1 01/2018 – 12/2021
ATM KZ CMP6 - KZ UVS-B - 1/10 02/2021 – 12/2021
GCO Eppley PSP KZ UVS-A-T KZ UVS-B-T KZ UVS-E-T 1 08/2018 – 12/2021
GWN Spectrolab SR-75 - - Yankee UVB1 1 07/2018 – 12/2021
PIL KZ CMP6 KZ UVS-A-T - KZ UVS-E-T 1 07/2017 – 12/2021

Table 3 Number of 10-minute records in each data set after quality control. In parenthesis, the percentage relative
to the available records with high sun (i.e., above 7◦). The last row aggregates data for all sites.

Site 𝛼𝑠 > 7◦ (GHI, UVA) (GHI, UVB) (GHI, UVE)
LES 61833 (100%) 59185 (95.7%) - 59026 (95.5%)

ATM 19524 (100%) - 19277 (98.7%) -
GCO 79700 (100%) 78928 (99.0%) 78735 (98.8%) 78901 (99.0 %)
GWN 80634 (100%) - - 77765 (96.4%)

PIL 64903 (100%) 59644 (91.9%) - 58431 (90.0%)
All sites 197757 (95.8%) 98012 (98.8%) 274123 (95.5%)

local vertical path. The Rayleigh scattering strongly attenuates UV
radiation in relation to broadband radiation (shorter wavelength),
and its effects depend on the air mass. The greater the air mass,
the lower UV fraction, as shown for UVE in Figure 2(a). The
clearness index, 𝑘𝑡 , is the ratio of GHI and the solar irradiance
incident at the top of the atmosphere. It is a dimensionless positive
quantity (typically less than 1) that acts as a proxy for the effects
of cloudiness on 𝑓𝑋 . Typically, cloudiness tends to decrease UV
fraction, as shown in Figure 2(b) for UVE. The ozone concentration
has typical values between 250 and 400 DU and is scaled by a factor
of 100 DU so that the ozone ratio renges from 2.5 to 4.0.

The usual performance metrics used in the solar assessment
field are used to describe performance [23]: the mean bias devi-
ation (MBD), the root mean square deviation (RMSD), and the
Kolmogorov-Smirnov index (KSI). The first two are defined as:

MBD =
1
𝑁

𝑁∑︂
𝑖=1

𝑑𝑖 , RMSD =

[︄
1
𝑁

𝑁∑︂
𝑖=1

𝑑2
𝑖

]︄ 1
2

(5)

where 𝑁 is the number of samples, and 𝑑𝑖 = ˆ︁𝑦𝑖−𝑦𝑖 are the residuals
from the modeled estimates (for each UV sub-band) ˆ︁𝑦𝑖 = 𝐺𝐻𝐼 ×
𝑓𝑈𝑉𝑋 compared to the measured UV irradiance, 𝑦𝑖 = UVX. Both
metrics (in W/m2) express different aspects of the accuracy of
a model evaluating data on a sample-to-sample basis. Relative
versions of these indicators, rMBD and rRMSD, are expressed as
percentages of the average of the reference values.

The KSI [24] is a measure of the statistical similarity between
the estimates (�̂�) and the reference (𝐹) cumulative probability func-
tions across the range of the target variable 𝑦:

KSI =
∫

|�̂� (𝑦) − 𝐹 (𝑦) | 𝑑𝑦. (6)

KSI is positive and also has irradiance units, with lower KSI val-
ues indicating more statistical similarity between the two datasets.
Although a low rRMSD value could also correspond to a low KSI
value, the two metrics measure different aspects of the model’s
performance.

The coefficients for the UV fraction models, Eqs. (2) to (4),
are obtained using the curve_fit function of Python’s module
scipy.optimize to optimize the UVX radiation output accuracy.
A standard random sampling and cross-validation technique is
used, where each dataset is randomly separated into training and
validation subsets, each with half the data. After 500 iterations,
average parameters and performance indicators are obtained. The
same procedure is separately applied to each site and variable pair,

according to the available data after quality control, as listed in
Table 3. This produces locally adjusted models for each site and
variable, as listed in Table 4 and Table 5 for UVE and UVB, re-
spectively. The locally adjusted coefficients for the UVA models
can be found in Table 8. To obtain a unique 𝑓𝑋 parametrization
for each UV sub-band, a spatially weighted average of the local
coefficients from each site, 𝑠, is performed, < 𝑥 >=

∑︁
𝑤𝑠 𝑥𝑠 . The

weights, 𝑤𝑠 , for each site are proportional to the number of data
pairs from each site, 𝑁𝑠 : 𝑤𝑠 =

𝑁𝑠∑︁
𝑁𝑠

. The average coefficients
for each site and their corresponding standard deviations are listed
in the corresponding tables for each variable. The performance of
these "average" models is then evaluated at each site.

Note that we chose sites with similar climate classifications (see
Table 1), so the average models are expected to perform reason-
ably well over midlatitude temperate sites. However, no claim of
universality of the results can be made, and these models may not
be applicable to tropical, polar, or extremely high-altitude regions
without further adjustments. For application in such conditions,
local calibration of the UV fraction coefficients (Eq. (2)) with re-
gional data is highly recommended.

4 Results and discussion

The absolute performance indicators (MBD and RMSD) in
mW/m2 for UVE are shown in Figure 3 for four sites. The mea-
sured averages are shown for each site, but the inter-site compar-
isons are made in absolute terms. The localized versions of the
models (filled color bars) perform slightly better than the average
models (hatched bars), as expected. The constant model (CT) for
the UVE fraction is clearly inadequate, showing that its depen-
dence on atmospheric conditions cannot be ignored. The NP and
NP0 models differ only in the ozone dependence, which is present
in the NP (blue) but absent in the NP0 (green). Ozone improves
the model dispersion at all sites, as indicated by lower RMSDs.
The best model is the PM, with RMSDs less than 8 mW/m2.

Similar results are obtained for UVB, as shown in Figure 3 for
two sites. Ozone improves the NP performance, as measured by
RMSD, and the best local model is the PM, with RMSDs less than
70 mW/m2. The inclusion of an easily accessible quantity as the
total ozone content from MERRA-2 in the polynomial approach
(NP) implies a performance gain reducing, on average, 2% of the
rRMSD metric while slightly improving the relative bias for UVE
(3% in the case of UVB). Thus, from now on, the NP variant with
ozone will be considered for UVE and UVB. As expected, using
ozone information provides no improvement for the UVA variable.
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Table 4 Coefficients per site for UVE models (note the scaling factors). The last three columns show the average
coefficients, their standard deviation, σ, and the relative variation, ∆ = 100×σ/|x |, a measure of the variability across
sites. The last two rows indicate the number of data pairs and the corresponding weights.

Model Coefficient LES GWN GCO PIL Average 𝑥 𝝈 𝚫 (%)
CT 𝑐0 × 103 0.208 0.184 0.180 0.198 0.191 0.013 6.8

NP

𝑏0 × 103 1.117 0.986 0.839 1.409 1.062 0.243 22.9
𝑏1 × 103 -0.515 -0.762 -0.546 -0.696 -0.632 0.119 18.8
𝑏2 × 103 0.195 0.304 0.193 0.270 0.241 0.053 22.0
𝑏3 × 104 -0.321 -0.513 -0.304 -0.451 -0.398 0.101 25.4
𝑏4 × 105 0.189 0.305 0.173 0.266 0.234 0.063 26.9
𝑏5 × 103 -0.299 -0.083 -0.087 -0.392 -0.197 0.155 78.7
𝑏6 × 104 0.424 0.034 0.072 0.542 0.237 0.253 106.8

PM
𝑎0 × 103 0.545 0.758 0.616 0.915 0.705 0.164 23.3
𝑎1 -0.247 -0.201 -0.183 -0.206 -0.207 0.027 13.0
𝑎2 -0.942 -1.435 -1.268 -1.277 -1.247 0.207 16.6
𝑎3 -0.783 -1.020 -0.793 -1.237 -0.950 0.216 22.7

# data pairs 59026 77765 78901 58431 - - -
𝑤𝑠 0.22 0.28 0.29 0.21 - - -

Fig. 3 Performance indicators (MBD and RMSD) for UVE models. The site-specific models (filled bars) use the
coefficients from Table 4. The average models (hatched bars) use the average coefficients listed in the same table.
The measurement average for each site is indicated between both panels.

Average models. The variation of the most significant coeffi-
cients across sites is small, as shown in Tables 4 et 5. For instance,
the median of the percentage variations for UVE is less than 23%,
and for UVB, it is 6.2%. This suggests that average models, based
on a single set of average coefficients, could be useful for a broader
region (midlatitude and similar climate sites).

For instance, the average versions of the PM models (PMave),
using the average parameters listed in Tables 4 et 5 for UVE and
UVB, are, respectively:

𝑓𝑈𝑉𝐸 = 0.705 × 10−3 · 𝑘−0.207
𝑡 · 𝑚−1.247 · [𝑂3]−0.950, (7)

𝑓𝑈𝑉𝐵 = 0.523 × 10−2 · 𝑘−0.234
𝑡 · 𝑚−1.144 · [𝑂3]−1.002. (8)

The same procedure is used with the CT and NP models to build
their average versions. The performance of these average models
for estimating UVE and UVB has been analyzed for all available
data pairs. Tables 6 et 7 show how these average models perform at
each site. The corresponding average model for UVA is evaluated
in Table 9.

The performance results for the three average UVE models are
listed in Table 6, which includes each metric’s spatial weighted

average and its spread as quantified by the standard deviation (two
last columns). The CT model, included only as a benchmark,
shows a variable and significant bias across sites: between -2.3%
and 17.5%. The rMBD for the NP and the PM, which are ozone
dependent, has a smaller range: between -5.8% and 1.2% for the
NP and between -3.0% and 5.4% for the PM. The rRMSD metric
for each model is similar across sites. The NP estimates show
values between 10.4% and 13.8%, whereas the PM has lower val-
ues, between 8.8 and 11.8%. Clearly, the PM method has better
accuracy across sites, as measured by rRMSD. The NP model has
better KSI metrics at GWN and PIL.

Scatter plots between the UVE measurements and the corre-
sponding (NP or PM average) estimates are shown in Figure 5 for
the LES site. The density of samples is color coded (brighter col-
ors represent higher densities). This shows the smaller dispersion
of the PM estimates. For high UVE values, both models tend to
overestimate the measurements, whereas they underestimate them
at low UVE values.

The corresponding UVB results are listed in Table 7, where
all the relative metrics show larger values than for UVE. Biases
have mixed signs, but large magnitudes at some sites. Indicators
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Fig. 4 Performance indicators (MBD and RMSD) for UVB models. The site-specific models (filled bars) use the
coefficients from Table 5. The average models (hatched bars) use the average coefficients listed in the same table.
The measurement average for each site is indicated between both panels. The PM model has a negligible bias at
GCO.

Table 5 Coefficients per site for UVB models (note the
scaling factors). The last three columns show the aver-
age coefficients, their standard deviation, σ, and the rel-
ative variation, ∆ = 100 × σ/|x |, as a measure of their
variability across sites. The last two rows indicate the
number of data pairs and the corresponding weights for
each site.

Model Coefficient ATM GCO Average 𝝈 𝚫 (%)
CT 𝑐0 × 102 0.129 0.132 0.131 0.002 1.5

NP

𝑏0 × 102 0.576 0.635 0.623 0.042 6.7
𝑏1 × 102 -0.316 -0.330 -0.327 0.010 3.1
𝑏2 × 102 0.104 0.113 0.111 0.006 5.4
𝑏3 × 103 -0.155 -0.172 -0.169 0.012 7.1
𝑏4 × 105 0.838 0.959 0.935 0.086 9.2
𝑏5 × 103 -0.740 -1.052 -0.991 0.221 22.3
𝑏6 × 104 0.484 1.084 0.961 0.424 44.1

PM

𝑎0 × 102 0.495 0.530 0.523 0.025 4.8
𝑎1 -0.303 -0.217 -0.234 0.060 25.6
𝑎2 -1.215 -1.125 -1.144 0.064 5.6
𝑎3 -1.029 -0.995 -1.002 0.024 2.4

# data pairs 19277 78735 - - -
𝑤𝑠 0.20 0.80 - - -

at ATM are consistently larger than those at GCO, but almost 80%
of the data pairs come from this last site and dominate the average
model’s performance. A qualitatively similar behavior to the UVE
estimates can be observed: The average PM is more accurate than
the NP, showing a lower dispersion (rRMSD) at each site and
globally with 11.5% rRMSD (it was 10.7% for UVE). This small
performance difference could be because the results for UVB are
obtained from a smaller dataset with only two sites, which makes
the average model less robust than the one for UVE. Figure 6 shows
the scatter plots for the UVB estimates from the average NP and
PM for the GCO site. Again, a greater dispersion of the estimates
can be observed for the NP.

In summary, the PM has a better performance than the NP or
the baseline CT model for all variables and sites considered, and it
requires fewer coefficients (4) than the NP model (7). The average
version of the PM is able to estimate either UVE or UVB with an
approximate average dispersion of 11%. The applicability of this
PM model is restricted to sites with similar climate conditions as
those considered in this work (midlatitude, subtropical, temperate).
The training of the coefficients to local UV data ensures that biases
are kept small.

5 Summary and Conclusion
We considered the modeling of the UV fraction for the UVE,

UVB, and UVA bands using three simple models: a constant model
(CT), a polynomial model (NP), and a potential model (PM). These
models depend on the clearness index (cloudiness), the air mass
(describing the sun’s apparent position), and the total ozone col-
umn. We also considered versions without ozone dependence. The
models were fitted and evaluated using simultaneous 10-minute
UV and broadband GHI data from 5 midlatitude sites through the
Americas, all with temperate climates.

Except for the UVA band, ozone is required for modeling UVE
and UVB with acceptable accuracy. For the regions considered, it
is sufficient to use the ozone column estimates provided globally by
the MERRA-2 database to significantly improve the performance
indicators of the models.

The best model for UVE, PM, involves only four adjustable
parameters. When locally adjusted, this model is able to predict the
UVE fraction with dispersions between 7% and 11% of the average
values and negligible biases (less than 0.5% in absolute terms),
depending on the site. The average version of the PM model has
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Table 6 UVE fraction models performance using spatially averaged coefficients over all sites. The number of data pairs and weights for each site
is listed in Table 4. Relative metrics are expressed as a percentage of the average measured at each site. In the last columns, the weighted averages of
the absolute metrics are included along with their standard deviations, σ , both expressed as percentages of the overall average measured irradiance,
77.7 mW/m2.

Model Metric LES GWN GCO PIL Mean 𝝈

CT
rMBD (%) -2.3 +17.5 +12.6 +6.4 +9.5 8.5
rRMSD (%) 31.2 43.3 39.5 39.7 38.8 5.1
rKSI (%) 16.8 23.7 29.4 26.1 23.6 4.4

NP
rMBD (%) -5.8 -3.4 +1.2 +1.0 -1.7 3.4
rRMSD (%) 11.6 13.8 12.6 10.4 12.3 1.4
rKSI (%) 7.4 3.2 3.6 2.1 4.1 2.9

PM
rMBD (%) -3.0 -1.9 +5.4 +3.5 +1.1 4.1
rRMSD (%) 10.3 11.8 11.3 8.8 10.7 1.3
rKSI (%) 6.7 6.0 2.3 4.4 4.7 2.3

⟨𝐼𝑈𝑉𝐸⟩ (mW/m2) 88.6 67.7 69.8 84.3 77.7 9.0

(a) NP (average)

(b) PM (average)

Fig. 5 Scatter plots of UVE estimates from NP and PM
average models for the LES site.

Table 7 UVB fraction models performance using the averaged coeffi-
cients from Table 5 over all sites. In the last columns, the weighted av-
erages of the metrics are included along with their standard deviations,
σ , both expressed as percentages of the average measured irradiance
shown in the last row.

Model Metric ATM GCO Mean 𝝈
rMBD (%) 12.1 8.5 9.2 2.5

CT rRMSD (%) 41.6 38.4 39.0 2.3
KSI (%) 26.2 23.8 24.3 1.7
rMBD (%) 6.2 -4.9 -2.7 7.8

NP rRMSD (%) 19.3 12.6 13.9 4.7
KSI (%) 6.5 4.6 5.0 1.3
rMBD (%) 9.1 -2.5 -0.2 8.2

PM rRMSD (%) 17.7 10.0 11.5 5.4
KSI (%) 9.0 2.5 3.8 4.6

⟨𝐼𝑈𝑉𝐵⟩ (mW/m2) 511.1 517.0 515.8 4

larger biases (reaching 5% at a site) but still acceptable rRMSD,
less than 12% of the average values. The PM model is also best for
UVB, although only two sites had this variable. The local versions
are essentially unbiased and show dispersions between 10% and
13% of the average of the measurements. The average version
has rRMSDs between 10% and 18%, poorer performance than for
UVE. Thus, the PM provides a simple and precise parameterization
for the UV fraction in both UVE and UVB bands.

We also considered UVA modeling, and the details are provided
in Appendix A. Because ozone does not play a significant role in
this band, versions without this dependence (NP0 and PM0) were
locally adjusted. The PM0 model has three coefficients and a better
performance than NP0 (five coefficients) at both sites. Its average
version has an average rRMSD of 6.5% with negligible bias. This
dispersion is similar to the average uncertainty assigned to both
datasets.

In summary, the presented methodology can provide accurate
information on UVA, UVB, and UVE solar irradiances under sim-
ilar climatic conditions using Eq. (1) and the PM model, with the
following inputs:

• Global horizontal irradiance (GHI)

• Total ozone content (except for UVA)

• Solar geometry

In this work, ground-measured GHI and ozone data from MERRA-
2 were used, but any reliable GHI and ozone information source can
be utilized. For application in different climatic areas, re-training
the empirical coefficients of the PM model should be considered.

GHI is a ubiquitous variable, measured with good quality by
most meteorological services at many sites worldwide. Addition-
ally, ozone information is easily accessible through satellite or re-
analysis data. Thus, this methodology provides a basis for charac-
terizing UV radiation.
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(a) NP (average)

(b) PM (average)

Fig. 6 Scatter plots of UVB estimates using NP and PM
average models for the GCO site.

Acknowledgments
AL thanks Dr. Facundo Orte from the Servicio Metoerológico

Nacional (SMN) and the Instituto de Investigaciones Científicas y
Técnicas para la Defensa (CITEDEF), Argentina, for sharing the
data for the Pilar’s SAVER-NET site. AL, GA, and PR acknowl-
edge partial financial support by Comisión Sectorial de Investi-
gación Científica, Udelar, Uruguay (CSIC).

References
[1] Modenese, A., 2022, “Prevention of Health Risks Related to Occupational Solar

Ultraviolet Radiation Exposure in Times of Climate Change and COVID-19
Pandemic,” Atmosphere, 13(7), p. 1147.

[2] Bojilova, R., Mukhtarov, P., and Miloshev, N., 2022, “Dependence of the Index
of Biologically Active Ultraviolet Radiation on the Season and Time of Day,”
Atmosphere, 13(9), p. 1455.

[3] Pickett, J. E., White, K. M., and White, C. C., 2018, “Chapter 1 - Service Life
Prediction: Why Is This so Hard?” Service Life Prediction of Polymers and
Plastics Exposed to Outdoor Weathering, C. C. White, K. M. White, and J. E.
Pickett, eds., Plastics Design Library, William Andrew Publishing, pp. 1–18.

[4] Wohlgemuth, J. and Kurtz, S., 2014, “International PV QA Task Force’s pro-
posed comparative rating system for PV modules,” National Renewable Energy
Laboratory (NREL), Tech. Rep. NREL/CP-5J00-62846.

[5] International Organization for Standardization (ISO) and Com-
mission Internationale de l’Eclairage (CIE), 2019, “Erythema
Reference Action Spectrum and Standard Erythema Dose,”
Standard ISO/CIE 17166:2019(E), https://cie.co.at/publications/
erythema-reference-action-spectrum-and-standard-erythema-dose-0

[6] Commission Internationale de l’Eclairage and World Meteorological Organiza-
tion (CIE), 2014, “Rationalizing Nomenclature for UV Doses and Effects on
Humans,” World Meteorological Organization, WMO/GAW Report 211.

[7] Kosmopoulos, P. G., Kazadzis, S., Schmalwieser, A. W., Raptis, P. I., Pa-
pachristopoulou, K., Fountoulakis, I., Masoom, A., Bais, A. F., Bilbao, J.,
Blumthaler, M., Kreuter, A., Siani, A. M., Eleftheratos, K., Topaloglou, C.,
Gröbner, J., Johnsen, B., Svendby, T. M., Vilaplana, J. M., Doppler, L., Webb,
A. R., Khazova, M., De Backer, H., Heikkilä, A., Lakkala, K., Jaroslawski, J.,
Meleti, C., Diémoz, H., Hülsen, G., Klotz, B., Rimmer, J., and Kontoes, C.,
2021, “Real-time UV index retrieval in Europe using Earth observation-based
techniques: system description and quality assessment,” Atmospheric Measure-
ment Techniques, 14(8), pp. 5657–5699.

[8] Rigollier, C., Lefevre, M., and Wald, L., 2004, “The method Heliosat-2 for
deriving shortwave solar radiation from satellite images,” Solar Energy, 77(2),
pp. 159–169.

[9] Qu, Z., Oumbe, A., Blanc, P., Espinar, B., Gesell, G., Gschwind, B., Klüser, L.,
Lefèvre, M., Saboret, L., Schroedter-Homscheidt, M., and Wald, L., 2017, “Fast
radiative transfer parameterisation for assessing the surface solar irradiance: The
Heliosat-4 method,” Meteorologische Zeitschrift, 26(1), pp. 33–57.

[10] Laguarda, A., Giacosa, G., Alonso-Suárez, R., and Abal, G., 2020, “Perfor-
mance of the site-adapted CAMS database and locally adjusted cloud index
models for estimating global solar horizontal irradiation over the Pampa Húmeda
region,” Solar Energy, 199, pp. 295–307.

[11] Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., and Shelby, J.,
2018, “The National Solar Radiation Data Base (NSRDB),” Renewable and
Sustainable Energy Reviews, 89, pp. 51–60.

[12] Schroedter-Homscheidt, M., Hoyer-Klick, C., Killius, N., Betcke, J., Lefevre,
M., Wald, L., Wey, E., and Saboret, L., 2018, “User’s Guide to
the CAMS Radiation Service,” Copernicus Atmosphere Monitoring Ser-
vice, https://atmosphere.copernicus.eu/sites/default/files/2022-01/CAMS2_73_
2021SC1_D3.2.1_2021_UserGuide_v1.pdf

[13] Laguarda, A. and Abal, G., 2019, “Assessment of empirical models to estimate
UV-A, UV-B and UV-E solar irradiance from GHI,” Proceedings of the ISES So-
lar World Congress 2019, Santiago de Chile, Chile, 4–7 November, 2019, https://
proceedings.ises.org/?conference=swc2019&doi=10.18086%2Fswc.2019.42.04

[14] Habte, A., Sengupta, M., Gueymard, C. A., Narasappa, R., Rosseler, O., and
Burns, D. M., 2019, “Estimating Ultraviolet Radiation From Global Horizontal
Irradiance,” IEEE Journal of Photovoltaics, 9(1), pp. 139–146.

[15] Iqbal, M., 1983, An introduction to solar radiation, Academic Press, New York,
USA.

[16] Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S.,
and Orphal, J., 1999, “Atmospheric remote-sensing reference data from GOME-
2. Temperature-dependent absorption cross sections of O3 in the 231–794 nm
range,” J. Quant. Spectrosc. Radiat. Transfer, 61(4), pp. 509–517.

[17] Peel, M. C., Finlayson, B. L., and McMahon, T. A., 2007, “Updated world
map of the Köppen-Geiger climate classification,” Hydrology and Earth System
Sciences, 11(5), pp. 1633–1644.

[18] Stoffel, T. and Andreas, A., 1981, “NREL Solar Radiation Research Laboratory
(SRRL): Baseline Measurement System (BMS),” NREL Report No. DA-5500-
56488, doi: http://dx.doi.org/10.5439/1052221.

[19] McArthur, L., 2005, “Baseline Surface Radiation Network Operations manual,”
World Climate Research Programme - WMO, Tech. Rep. WCRP-121/ WMO
TD-No. 1274.

[20] Gelaro, R., McCarty, W., Suârez, M., Todling, R., Molod, A., Takacs, L.,
Randles, C., Darmenov, A., Bosilovich, M., Reichle, R., and Wargan, K., 2017,
“The Modern-Era RetrospectiveAnalysis for Research and Applications, Version
2 (MERRA-2),” Journal of Climate, 30(14), pp. 5419–5454.

[21] Laguarda, A., 2021, “Modelado de la irradiancia solar sobre la
superficie terrestre: Modelos físicos e híbridos utilizando infor-
mación satelital sobre la Pampa Húmeda,” Ph.D. thesis, Facultad
de Ingeniería, Universidad de la República, Montevideo, Uruguay,
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/9440/browse?
type=subject&order=ASC&rpp=20&value=Modelos+satelitales

[22] Young, A., 1994, “Air mass and refraction,” Applied Optics, 33(6), pp. 1108–
1110.

8 / PREPRINT FOR REVIEW Transactions of the ASME

https://doi.org/10.3390/atmos13071147
https://doi.org/10.3390/atmos13091455
https://doi.org/https://doi.org/10.1016/B978-0-323-49776-3.00001-5
https://doi.org/https://doi.org/10.1016/B978-0-323-49776-3.00001-5
https://www.nrel.gov/docs/fy15osti/62846.pdf
https://cie.co.at/publications/erythema-reference-action-spectrum-and-standard-erythema-dose-0
https://cie.co.at/publications/erythema-reference-action-spectrum-and-standard-erythema-dose-0
https://library.wmo.int/viewer/51252/?offset=##page=1&viewer=picture&o=bookmark&n=0&q=
https://doi.org/10.5194/amt-14-5657-2021
https://doi.org/10.5194/amt-14-5657-2021
https://doi.org/http://dx.doi.org/10.1016/j.solener.2004.04.017
https://doi.org/10.1127/metz/2016/0781
https://doi.org/https://doi.org/10.1016/j.solener.2020.02.005
https://doi.org/https://doi.org/10.1016/j.rser.2018.03.003
https://doi.org/https://doi.org/10.1016/j.rser.2018.03.003
https://atmosphere.copernicus.eu/sites/default/files/2022-01/CAMS2_73_2021SC1_D3.2.1_2021_UserGuide_v1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2022-01/CAMS2_73_2021SC1_D3.2.1_2021_UserGuide_v1.pdf
https://proceedings.ises.org/?conference=swc2019&doi=10.18086%2Fswc.2019.42.04
https://proceedings.ises.org/?conference=swc2019&doi=10.18086%2Fswc.2019.42.04
https://doi.org/10.1109/JPHOTOV.2018.2871780
https://doi.org/https://doi.org/10.1016/S0022-4073(98)00037-5
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/http://dx.doi.org/10.5439/1052221
https://bsrn.awi.de/fileadmin/user_upload/bsrn.awi.de/Publications/McArthur.pdf
https://bsrn.awi.de/fileadmin/user_upload/bsrn.awi.de/Publications/McArthur.pdf
https://doi.org/https://doi.org/10.1175/JCLI-D-16-0758.1
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/9440/browse?type=subject&order=ASC&rpp=20&value=Modelos+satelitales
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/9440/browse?type=subject&order=ASC&rpp=20&value=Modelos+satelitales
https://doi.org/10.1364/AO.33.001108


[23] Zhang, J., Florita, A., Hodge, B.-M., Lu, S., Hamann, H. F., Banunarayanan, V.,
and Brockway, A. M., 2015, “A suite of metrics for assessing the performance
of solar power forecasting,” Solar Energy, 111, pp. 157–175.

[24] Espinar, B., Ramírez, L., Drews, A., Beyer, H. G., Zarzalejo, L. F., Polo, J., and
Marín, L., 2009, “Analysis of different comparison parameters applied to solar
radiation data from satellite and German radiometric stations,” Solar Energy,
83(1), pp. 118–125.

[25] Long, C. and Shi, Y., 2008, “An Automated Quality Assessment and Control Al-
gorithm for Surface Radiation Measurements,” The Open Atmospheric Science
Journal, 2, pp. 23–37.

Appendix A: Modeling the UVA band
The methodology described in Section 3 is applied to the UVA

radiation band (315–400 nm) at the LES and GCO sites, where
this measurement was available (Table 3). UVA from the PIL site
had some systematic error and was excluded from the analysis.
Because ozone is not expected to play a significant role in the
UVA band [13], the parametrizations are independent of the ozone
content: i.e., 𝑏5 = 0, 𝑏6 = 0 in Eq. (3) and 𝑎3 = 0 in Eq. (2) for
all sites5.

Table 8 UVA coefficients per site. The last two columns show the
(weighted) average coefficients and their respective standard deviations
using the weights listed in the last row.

Model Coefficient LES GCO Average 𝝈
CT 𝑐0 0.054 0.055 0.055 0.000

NP0

𝑏0 0.072 0.064 0.067 0.004
𝑏1 -0.020 -0.005 -0.011 0.007
𝑏2 × 102 0.626 -0.090 0.217 0.354
𝑏3 × 103 -0.946 0.366 -0.196 0.649
𝑏4 × 104 0.549 -0.275 0.078 0.408

PM0
𝑎0 0.053 0.055 0.054 0.001
𝑎1 -0.244 -0.219 -0.230 0.012
𝑎2 -0.221 -0.190 -0.203 0.015

# data pairs 59185 78928 - -
Weights on average 0.429 0.571 - -

Following the same random sampling and cross-validation pro-
cedure, a set of coefficients and performance indicators for each
site is obtained. Table 8 shows the locally adjusted coefficients for
each model and site. The last rows show the number of data pairs
and the weights for each site. The last columns show the (weighted)
average coefficients and their standard deviations. These sets of co-
efficients are used to construct the average versions for each model.
For instance, the average PM model for UVA fraction is:

𝑓𝐴 = 0.054 × 𝑘−0.230
𝑡 × 𝑚−0.203. (A1)

When this and the other models are evaluated, the performance
indicators in Table 9 are found.

The performance of the locally adjusted models at each site is
shown as filled bars in Figure 7. The performance of the average
models is shown with hatched bars. For all models, a small increase
in RMSD is associated with the use of a single set of coefficients
(average model). The performance indicators of the average models
are listed (in relative terms) in Table 9. As with other variables,
PM0 is the best model, both as a local model and as an average
model. A very good overall performance is obtained from its
average version: 6.5% of rRMSD and negligible bias.

Finally, Figure 8 shows the scatter plots for the NP0 and PM0
average model estimations of UVA for the LES site. Note the
smaller scatter associated with the PM0 model and the tendency to
overestimate at high irradiance values.

5We also tested an ozone-dependent PM model, and it provided no significant gain
over PM0.

Table 9 Average model performance for UVA. The sim-
ple average of the relative indicators is shown in the
last column. Weighted averages are calculated with the
weights from Table 8, and relative indicators are percent-
ages of the average measured values indicated in the last
row.

Model Metric LES GCO Average

CT
rMBD (%) 1.9 0.1 0.9
rRMSD (%) 10.6 11.2 10.9
KSI (%) 2.9 2.0 2.4

NP0
rMBD (%) 0.8 -2.3 -1.0
rRMSD (%) 9.4 9.5 9.5
KSI (%) 4.4 3.3 3.8

PM0
rMBD (%) 2.2 -1.8 -0.1
rRMSD (%) 5.6 7.1 6.5
KSI (%) 2.3 1.8 2.1

⟨𝐼𝑈𝑉𝐴⟩ (W/m2) 24.4 23.6 23.9

Appendix B: Details of the ground measurements
quality control procedure

To achieve reliable and accurate results, a systematic approach
to quality control is imperative. The initial step in this process is
data preprocessing, where adjustments are made to the temporal
attributes and sampling frequency. Following the World Mete-
orological Organization guidelines, time tags are standardized to
UTC-0, and labels are aligned with the start of each interval. The
sample frequency is unified to 10-minute intervals, resampling the
1-minute data with averages for 10 minutes. Missing data are ig-
nored in this step. Using the metadata for each site, the cosine of
the solar zenith angle, cos 𝜃𝑧 , is calculated at mid-interval points
using routines from the PVlib library in Python.

An expert visual inspection is conducted in the five datasets to
to detect obvious anomalies. Finally, the five 10-minute datasets
are subjected to a semiautomated quality control procedure based
on eight filters applied on the variables GHI, UVA, UVB, and
UVE and their combinations, as described in Table 10. Filter F1
restricts data records to those with solar altitudes larger than 7◦,
thus minimizing the incidence of the cosine error and other special
conditions that occur near sunrise and sunset. The other filters are
lower and upper boundaries inspired in the BSRN filtering proce-
dure [25]. Filters F3, F4, and F5 apply to the three UV fractions,
whereas F2, F6, and F7 apply to GHI, UVA, and UVB, normalized
by the respective scale factors 𝑆0, 𝑆𝐴, and 𝑆𝐵. This set of filters is
applied to each dataset, using a specific set of parameters for each
site and variable. The parameters are selected visually by inspect-
ing figures such as Figure 9, and their values are listed in tables 11
to 15, with the filtering results. In summary, all the training and
validation sets (GHI, UVX) are the result of applying F1 and F2
filters, along with additional conditions imposed according to the
UV component considered; i.e., F3 and F6 for UVA, F4 and F7 for
UVB, and F5 for UVE (see Table 3).

The average number of records that pass the relevant filters can
be used as a raw indicator of the average quality of each dataset.
Three sites (LES, GCO, and GWN) are well above 90%, whereas
the other two sites (ATM and PIL) are below 86%. After filter F2
is applied, a few low values of GHI remain in the datasets. Because
the UV fractions are very sensitive to low GHI, these were removed
through the additional condition 𝐺𝐻𝐼 > 15 W/m2.
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Table 10 Description of filters applied to all datasets. The UV fractions are fA = UVA/GHI , fB = UVB/GHI and
fE = UVE/GHI . Scale factors are applied to fB AND fE in F4 and F5. The solar constant used in F2 is S0 = 1361 W/m2,
and the scaling factors for UVA and UVB (used in F7 and F8) are SA = 100 W/m2 and SB = 10 W/m2, respectively.

Filter Short description Condition Variables
F1 Minimum solar altitude cos 𝜃𝑧 > 0.12 All
F2 Boundaries for GHI 𝑐1 ≤ 𝐺𝐻𝐼

𝑆0
≤ 𝑐2 + 𝑓2 · (cos 𝜃𝑧 )𝑎2 GHI

F3 Boundaries for UVA fraction 𝑐1 ≤ 𝑓𝐴 ≤ 𝑐2 UVA, GHI
F4 Boundaries for UVB fraction 𝑐1 + 𝑓1 · (cos 𝜃𝑧 )𝑎1 ≤ 𝑓𝐵 × 103 ≤ 𝑐2 + 𝑓2 · (cos 𝜃𝑧 )𝑎2 UVB, GHI
F5 Boundaries for UVE fraction 𝑐1 + 𝑓1 · (cos 𝜃𝑧 )𝑎1 ≤ 𝑓𝐸 × 104 ≤ 𝑐2 + 𝑓2 · (cos 𝜃𝑧 )𝑎2 UVE, GHI
F6 Boundaries for UVA 𝑐1 ≤ 𝑈𝑉𝐴

𝑆𝐴
≤ 𝑐2 + 𝑓2 · (cos 𝜃𝑧 )𝑎2 UVA

F7 Boundaries for UVB 𝑐1 ≤ 𝑈𝑉𝐵
𝑆𝐵

≤ 𝑐2 + 𝑓2 · (cos 𝜃𝑧 )𝑎2 UVB

Table 11 Coefficients and results for site LES. After visual inspection, from 68444 diurnal records, 61833 pass the
solar altitude filter (F1). The relative results are expressed as a percentage of these 61833 records. All coefficients
are dimensionless. On average, 98.2% of the records pass the filters.

Filter Variables 𝑐1 𝑓1 𝑎1 𝑐2 𝑓2 𝑎2 Pass % F1
F2 GHI 0.002 • • 0.074 1.0 1.2 61213 99.0
F3 GHI, UVA 0.020 • • 0.2 • • 60295 97.5
F4 GHI, UVB 0.070 2.2 1.6 2.5 2.0 1.5 59574 96.3
F5 GHI, UVE 0.300 1.8 1.4 3.5 1.7 1.5 59859 96.8
F6 UVA 0.100 • • 0.017 0.7 1.3 61383 99.3
F7 UVB 0.000 • • 0.002 0.35 2.1 61367 99.2

Table 12 Coefficients and results for site ATM. After visual inspection, from 32136 diurnal records, 29005 pass the
solar altitude filter (F1). The relative results are expressed as a percentage of these 29005 records. All coefficients
are dimensionless, and only filters for existing variables (GHI, UVB) are shown. On average, 85.7% of the records
pass the filters.

Filter Variables 𝑐1 𝑓1 𝑎1 𝑐2 𝑓2 𝑎2 Pass % F1
F2 GHI 0.002 • • 0.074 1.0 1.2 24872 85.8
F4 GHI, UVB 0.070 2.2 1.6 2.5 2.0 1.5 24749 85.3
F7 UVB 0.000 • • 0.002 0.264 1.8 24918 85.9

Table 13 Coefficients and results for site GCO. After visual inspection, from 105549 diurnal records, 94244 pass the
solar altitude filter (F1). The relative results are expressed as a percentage of these 94244 records. All coefficients
are dimensionless. On average, 97.9% of the records pass the filters.

Filter Variables 𝑐1 𝑓1 𝑎1 𝑐2 𝑓2 𝑎2 Pass % F1
F2 GHI 0.002 • • 0.074 1.0 1.2 94117 99.9
F3 GHI, UVA 0.020 • • 0.2 • • 94144 99.9
F4 GHI, UVB 0.0 1.45 1.6 2.5 1.6 1.5 93943 99.7
F5 GHI, UVE 0.0 1.8 1.9 1.8 3.5 1.1 94077 99.8
F6 UVA 0.0 • • 0.005 0.8 1.2 94190 99.9
F7 UVB 0.0 • • 0.002 0.253 2.0 94127 99.9

Table 14 Coefficients and results for site GWN. After visual inspection, from 105548 diurnal records, 95069 pass the
solar altitude filter (F1). The relative results are expressed as a percentage of these 95069 records. All coefficients
are dimensionless, and only filters for existing variables (GHI, UVE) are shown. On average, 98.7% of the records
pass the filters.

Filter Variables 𝑐1 𝑓1 𝑎1 𝑐2 𝑓2 𝑎2 Pass % F1
F2 GHI 0.002 • • 0.074 1.0 1.2 93820 98.7
F5 GHI, UVE 0.050 1.9 1.9 3.5 1.7 1.5 93713 98.6

Table 15 Coefficients and results for site PIL. After visual inspection, from 98893 diurnal records, 89344 pass the
solar altitude filter (F1). The relative results are expressed as a percentage of these 89344 records. All coefficients
are dimensionless. On average, 80.4% of the records pass the filters.

Filter Variables 𝑐1 𝑓1 𝑎1 𝑐2 𝑓2 𝑎2 Pass % of F1
F2 GHI -0.002 • • 0.026 1.0 1.2 81319 91.0
F3 GHI, UVA 0.025 • • 0.175 • • 69766 78.1
F5 GHI, UVE 0.100 2.0 2.0 2.000 3.0 1.5 66458 74.4
F6 UVA 0.000 • • 0.004 0.9 1.2 69794 78.1
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Fig. 7 Performance indicators (MBD and RMSD) for UVA models without ozone. The site-specific models (filled bars)
use the coefficients from Table 8, and the average models (hatched bars) use the average coefficients listed in the
same table. The measurement average for each site is indicated between both panels.

(a) NP (b) PM

Fig. 8 Scatter plots of UVA estimates using NP and PM average models for the GCO site.
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(a) Boundaries on GHI from F2 (b) Boundaries on UVB from F7

(c) Boundaries in fA from F3 (d) Boundaries on fE from F5

Fig. 9 Boundaries for several variables at the LES site.
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