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Abstract 

Ground reflectivity or albedo is required for the estimation of the solar irradiance incident on an inclined surface. 

The ground is frequently modeled as a constant albedo diffuse reflector and this is inadequate for several solar energy 

applications, particularly for bifacial PV power plant yield estimation. Recent advances have categorized albedo 

models according to their complexity, with bivariate models -those incorporating the zenith angle and diffuse 

fraction- performing better. In a previous study, Rodríguez-Muñoz et al. (2022) evaluated six albedo models and 

confirmed that bivariate models were the most accurate. However, they also highlighted the need for measurements 

of both global and diffuse solar irradiance to apply these models. For simplicity, empirical diffuse fraction models 

can be used instead of using diffuse irradiance measurements. This study builds upon prior research by assessing the 

impact of employing empirical diffuse fraction models on albedo estimation. To assess this, measurements were 

conducted over the course of approximately one year at an experimental site with soil and climate conditions 

representative of the Pampa Húmeda region in South America. The results indicate that incorporating these models 

into albedo estimation slightly degrades performance, but still outperforms constant and univariate models. Thus, a 

bivariate albedo model combined with diffuse fraction estimates represents an effective balance between accuracy 

and simplicity. 

Keywords: ground albedo, diffuse fraction, bifacial PV. 

1. Introduction 

Solar energy applications require estimating global solar irradiance on surfaces of arbitrary orientation, which 

includes three components: direct irradiance, diffuse irradiance from the sky, and irradiance reflected from nearby 

surfaces. Traditional transposition models typically focus only on the ground reflection, assuming it is a 

hemispherical and isotropic reflecting surface with constant albedo. This assumption is generally sufficient when the 

reflected component constitutes a small portion of the total incident irradiance, as in many solar energy applications. 

However, this assumption is less suitable for bifacial photovoltaic panels, which are more sensitive to ground 

reflection. These panels can generate up to 15% more energy annually than conventional panels on typical albedo 

soils, and up to 30% more on highly reflective soils (Yusufoglu et al., 2014). The increasing adoption of this 

technology suggests it will soon dominate the market (Kopecek & Libal, 2021). This trend has motivated the 

advancement of more sophisticated albedo models that take into account solar geometry, cloud cover, and the 

characteristics of the surrounding terrain. 

These models fall into three categories of increasing complexity. The first category (I) includes models that assume 

that the ground is a diffuse hemispherical isotropic reflector with a constant albedo. Variations in these models arise 

from different methods for assigning this constant value (Liu & Jordan, 1960; Gueymard, 1987; Psiloglou & 

Kambezidis, 2009). The second category (II) includes models that introduce some specular component in the 

reflected ground irradiance, thus treating albedo as a univariate function of the solar zenith angle (Nkemdirim, 1972; 

Temps & Coulson, 1977; Dickinson, 1983; Psiloglou & Kambezidis, 2009; Tuomiranta et al., 2021). The third 

category (III) includes models that further refines the previous by incorporating cloudiness information (through the 

diffuse fraction) into the albedo calculation (Temps & Coulson, 1977; Gueymard, 1987; Gardner & Nadeau, 1988; 

Ineichen et al., 1990; Chiodetti et al., 2016; Tuomiranta et al., 2021). These latter models require measurements of 

both global and diffuse horizontal irradiance, whereas the simpler models in the first two categories only need global 

irradiance. 

Comparative performance of these models across different soils and climates has been explored in the literature 

(Ineichen et al., 1990; Psiloglou & Kambezidis, 2009; Tuomiranta et al., 2021). Early studies recommended using 

constant, locally measured albedo values based on terrain characteristics (Ineichen et al., 1990). However, more 



 

recent research, such as Tuomiranta et al. (2021), which evaluated 26 albedo models at 26 sites, reports significant 

benefits of using bivariate models. Their findings also suggest that relying on constant albedo values from databases 

can introduce significant errors, highlighting the need for local model adaptation to accurately reflect typical 

conditions. 

Given the importance of local adaptation, Rodríguez-Muñoz et al. (2022) evaluated the performance of six pre-

existing models for estimating green grass albedo using data from a site in the Pampa Húmeda region in South 

America (Salto, Northwest of Uruguay). Two models from each category were selected based on Tuomiranta et al. 

(2021). The best-performing model was identified both globally and within each category. The models' coefficients 

were determined through random sampling and cross-validation using albedo measurements from the Solar Energy 

Laboratory at the University of the Republic of Uruguay (LES-UdelaR). The most accurate models were those in the 

third category, which are bivariate and depend on the Sun position in the sky and the diffuse fraction. However, these 

models are more complex to implement and calibrate locally, as they require the additional measurement of 

horizontal diffuse irradiance (DHI) to calculate the diffuse fraction, fd = DHI GHI⁄ , where GHI is the horizontal 

global solar irradiance. Datasets with DHI are less common than those with GHI because accurate measurement of 

the diffuse component requires precise solar tracking to block the direct and circumsolar components, and this 

requires frequent maintenance. 

An alternative approach to simplify the implementation of bivariate albedo models is the use of empirical diffuse 

fraction models. These models estimate the diffuse fraction through empirical correlations based on geometric 

calculations and global irradiance data, such as the solar zenith angle and clearness index, thus eliminating the need 

for measurements of diffuse solar irradiance (Abal et al., 2017; Yang, 2022). This study aims to assess the impact on 

model performance when using empirical diffuse fraction models instead of diffuse solar irradiance measurements. 

Specifically, two locally adjusted diffuse fraction models are considered in combination with two bivariate locally 

adjusted albedo models. The performance of these combinations was assessed using one year of quality-controlled 

albedo measurements collected at LES-UdelaR, which were independent of the data used in the previous work 

(Rodríguez-Muñoz et al., 2022). The coefficients of the albedo models were updated due to minor differences in 

grass height at the site, compared to the previous campaign. 

This paper is organized as follows: The next section provides an overview of the models under consideration (both 

for albedo and diffuse fraction), details the dataset used, outlines the quality control procedures, and describes the 

performance indicators for model comparison. This is followed by a presentation and analysis of the results. The 

final section summarizes the main conclusions of this study. 

2. Methodology 

2.1. Albedo models 

The albedo or reflectance of a surface is the fraction of global solar irradiance that is reflected by it. The albedo of 

the ground, assumed to be horizontal, is defined as: 

𝜌𝑔 =
𝐺𝑔

𝐺ℎ
 (1) 

where Gg is the irradiance reflected by the ground (to the entire hemisphere) and Gh is the global solar irradiance on 

a horizontal plane. This parameter depends on various factors: solar altitude, cloudiness, changes due to local climate 

or human actions (e.g., changes in the surrounding terrain or grass height due to maintenance). The simplest model 

assumes the ground to be a diffuse hemispherical isotropic reflector with constant albedo independent of the 

aforementioned variables. The albedo can be obtained from generic databases for different soil types (Liu & Jordan, 

1960; Gueymard, 1987) or estimated from experimental measurements, this latter being the recommended procedure 

(Ineichen et al., 1990; Tuomiranta et al., 2021). 

Although this work focuses on bivariate models (category III), it will also include category I and II models to provide 

a better framework and baseline for comparison, working with a total of four albedo models. The first model 

considered in this work the arithmetic mean albedo, 

𝑚𝑜𝑑𝑒𝑙 1: 𝜌𝑔 =
1

𝑛
∑ 𝜌𝑖 (2) 

where ρi represents the i-th albedo measurement out of n measurements. This model belongs to category I and is 

considered in Psiloglou & Kambezidis (2009) and Tuomiranta et al. (2021). 



 

The second model in this work corresponds to that proposed by Tuomiranta et al. (2021)  

𝑚𝑜𝑑𝑒𝑙 2: 𝜌𝑔 = 𝜌𝑛 ×
1 + 𝑏1

1 + 𝑏1𝑐𝑜𝑠𝜃𝑧
 (3) 

This univariate model depends on the solar zenith angle, θz, and has two adjustable parameters: ρn and b1. Is based 

on the previous work of Dickinson (1983) and involves the restriction: b1 ∈ [0, 2], indicating that albedo is an 

increasing function of the solar zenith angle. This directional model is in category II. 

Although there exist other models in categories I and II, the models selected for this study offer the highest 

performance within their categories for the specific ground and climate conditions considered here. This is supported 

by the findings of Tuomiranta et al. (2021) and Rodríguez-Muñoz et al. (2022). 

The third and fourth models are bivariate and belong to category III. Specifically, the third model extends the second 

model as proposed by Tuomiranta et al. (2021). It incorporates cloud cover presence through the diffuse fraction fd 

and features three adjustable parameters. This approach allows for separate consideration of reflections from both 

direct and diffuse solar irradiance: 

𝑚𝑜𝑑𝑒𝑙 3: 𝜌𝑔 = (1 − 𝑓𝑑) × 𝜌𝑏𝑛 ×
1 + 𝑏1

1 + 𝑏1𝑐𝑜𝑠𝜃𝑧
+ 𝑓𝑑 × 𝜌𝑑 (4) 

where ρbn, b1, and ρd are the adjustable parameters. The parameters ρbn and ρd represent the albedo for beam solar 

irradiance and diffuse solar irradiance, respectively. The restriction b1 ∈ [0, 2] is maintained, and the condition ρbn ≤ 

ρd is added.  

The fourth and final model has a similar structure, and was initially proposed by Rodríguez et al. (2022). It builds on 

Gueymard's (1987) model for inclined surfaces, but has been adapted and simplified for horizontal surfaces. It 

integrates both the zenith angle and the diffuse fraction into a simplified expression with five adjustable parameters: 

𝑚𝑜𝑑𝑒𝑙 4: 𝜌𝑔 = (1 − 𝑓𝑑) × [𝜌𝑛 + 𝑒𝑏1+𝑏2𝜃𝑧+𝑏3𝜃𝑧
2

] + 𝑓𝑑 × 𝜌𝑑 (5) 

where ρn represents the albedo for direct normal irradiance under pure isotropy conditions, and ρd is the albedo for 

diffuse irradiance. The parameters b1, b2, and b3 control how the albedo varies with the solar zenith angle. This model 

has five adjustable parameters in total. 

2.2. Diffuse fraction models 

As mentioned in the introduction, category III models require two experimental measurements: GHI and DHI. This 

work explores the reduction in accuracy of replacing the DHI measurements with a locally adjusted 

phenomenological model to estimate DHI from GHI.  

Numerous phenomenological models for diffuse fraction estimation are used worldwide (see Yang (2022) for a 

comprehensive review). However, these models often require locally adapted coefficients to perform with acceptable 

accuracy in different climates. For convenience and simplicity, we selected two of the simplest and best performing 

models from Abal et al. (2017), which also used data from the site considered in this work.  

The first model, referred here as RA2s (Ruiz Arias et al., 2010), has a dependence on air mass (or solar zenith angle) 

and on the clearness index (or GHI). The second model, referred here as SO2, is the historical model introduced in 

Skartveit and Olseth (1987). It has a more complicated structure than RA2s, but ultimatley depends on the solar 

altitude (or solar zenith angle) and the clearness index. Both models, were previously evaluated with locally adjusted 

coefficients for the Salto site, have a relative RMSD of 16.9% and 16.6% of the measured diffuse fraction, 

respectively and negligible mean bias (Abal et al. (2017)). As mentioned, both are bivariate and require the clearness 

index (𝑘𝑡 = 𝐺𝐻𝐼 𝑆𝐶⁄ 𝐹𝑛𝑐𝑜𝑠(𝜃𝑧), a normalized version of the GHI defined below) and the solar zenith angle, which 

can be calculated from site position and local time information.  

The RA2s model is given by the following expression: 

𝑅𝐴2𝑠 𝑚𝑜𝑑𝑒𝑙: 𝑓𝑑 = 𝑎0 + 𝑎1 × 𝑒−𝑒𝑥𝑝(𝑎2+𝑎3𝑘𝑡+𝑎4𝑘𝑡
2+𝑎5𝑚) (6) 

where kt is the clearness index defined as kt=Gh/G0h, where 𝐺0ℎ = 𝑆𝑐𝐹𝑛𝑐𝑜𝑠(𝜃𝑧) is the solar irradiance on a horizontal 

surface at the top of the atmosphere (with a solar constant Sc = 1361 W/m2 and Fn the orbital factor). The parameter 

m represents the air mass and is calculated from the zenith angle including corrections for sphericity and refraction 

(Young 1994). The RA2s model has six adjustable parameters: a0, a1, a2, a3, a4, a5. 

The SO2 model is shown below, 



 

𝑆𝑂2 𝑚𝑜𝑑𝑒𝑙: 𝑓𝑑 = {

1 𝑘𝑡 < 𝑘𝑎

𝑓(𝑘𝑡, 𝛼𝑠) 𝑘𝑎 ≤ 𝑘𝑡 ≤ 𝛼𝑘𝑏(𝛼𝑠)

𝑓(𝛼𝑘𝑡, 𝛼𝑠) 𝑘𝑡 > 𝛼𝑘𝑏(𝛼𝑠)
 (7) 

with, 

𝑓(𝑘𝑡, 𝛼𝑠) = 1 − (1 − 𝑑1)[𝑎√𝐾 + (1 − 𝑎)𝐾2],

𝐾(𝑘𝑡, 𝛼𝑠) =
1

2
{1 + 𝑠𝑖𝑛 [𝜋 (

𝑘𝑡 − 𝑘𝑎

𝑘𝑏 − 𝑘𝑎
−

1

2
)]},      

𝑘𝑏(𝛼𝑠) = 𝑟 + 𝑠𝑒𝑥𝑝 (
−𝛼𝑠

𝛼0
),                           

𝑑1(𝛼𝑠) = 𝑟′ + 𝑠′𝑒𝑥𝑝 (
−𝛼𝑠

𝛼0
),                        

 (8) 

where αs is the solar altitude and the complementary angle of the zenith angle, and α0=0.291. This model also has six 

adjustable parameters: a, ka, r, s, r′, and s′. 

The locally determined parameters for both models, specific to the location of this work (Salto, Uruguay), can be 

found in Abal et al. (2017). 

2.3. Experimental data and quality control 

The experimental data for this study was collected at the Solar Energy Laboratory of the University of the Republic 

of Uruguay (LES-UdelaR, from its Spanish name), located in a semi-rural area near the city of Salto (latitude: 

31.28°S, longitude: 57.92°W, altitude: 60 m above sea level). LES is located in the Pampa Húmeda climate region, 

classified as Cfa (warm temperate, humid, with hot summers) according to the updated Köppen-Geiger classification 

(Peel et al., 2007). The data results from a setup deviced specifically to measure ground albedo and set spans 

approximately one year, from January 2023 to January 2024. It includes global horizontal irradiance (Gh or GHI), 

solar irradiance reflected by the ground with no tilt (Gg), diffuse horizontal irradiance (Gd or DHI), and normal 

incidence solar irradiance (Gb or DNI) recorded at one-minute intervals. 

 

Fig. 1a: Albedo measurement setup, including Gh and Gg sensors 

(both instruments on the right; the others are for inclined solar 

irradiance, not used in this study). 

 

Fig. 1b: SOLYS2 system with Gd and Gb sensors. 

Fig. 1: Installation of measuring instruments. 

The ground under study is covered mainly by green grass, and its albedo was calculated using Eq. (1) with 

measurements of Gg and Gh. These measurements were taken with Kipp & Zonen CMP6 pyranometers positioned 

1.2 meters above the ground, using a special support shown in Fig. 1a (both equipment at the right). Horizontal 

diffuse solar irradiance, Gd, was measured with a Kipp & Zonen CMP10 ventilated pyranometer with a shading ball, 



 

mounted on a SOLYS2 tracking system (Fig. 1b), located about 30 meters from the previous setup. Direct normal 

irradiance was measured with a Kipp & Zonen CHP1 pyrheliometer on the same tracking system, primarily for 

quality control. All pyranometers are maintained daily and calibrated twice a year against the LES secondary 

standard, which is traceable to the World Standard Group in the World Radiation Center in Davos, Switzerland. Data 

were recorded every minute and averaged over ten-minute intervals to account for spatial mismatch between 

measurements and to account for rapid irradiance variations due to specific cloud formations. 

The diurnal dataset (N=22282 records) was subjected to a series of quality control filters based on the Baseline Solar 

Radiation Network guidelines (BSRN; McArthur (2005)). The quality control process is summarized in Table 1 and 

Fig. 2. Each filter is applied on diurnal records, independently from the rest, except for the last one. The first four 

filters (F1 to F4) apply upper and lower limits to the solar irradiance measurements, G, as follows: 

𝑏 ≤ 𝐺 ≤ 𝑆𝑐𝑝(𝑐𝑜𝑠𝜃𝑧)𝑎 + 𝑐 (9) 

where G represents each solar irradiance component and parameters p, a, b, and c were determined locally for each 

filter through visual inspection. Filter F5 imposes a lower limit on solar altitude, αs> 10°, excluding measurements 

affected by significant directional errors (low solar altitudes). Filter F6 checks that Gh, Gd, and Gb satisfy the closure 

relation:  

𝐺ℎ = 𝐺𝑏𝑐𝑜𝑠𝜃𝑧 + 𝐺𝑑 (10) 

with an 8 % tolerance from the average Gh. Filter F7 imposes an upper limit on the diffuse fraction, ensuring that fd 

<1.03, with a 3 % tolerance to allow for experimental error. Filter F8 eliminates data points with low clearness index 

and low diffuse fraction, typically linked to errors under heavy overcast conditions and low irradiance. Filter F9 sets 

a loose upper limit on the clearness index, with kt < 1. Filter F10 ensures albedo measurements are within the 

theoretical range 0 ≤ ρg ≤ 1. Finally, Filter F11 is a statistical filter that removes outliers, defined as albedo data not 

meeting the condition |𝜌𝑔 − 𝜌
𝑔

| ≤ 3𝜎, where 𝜌
𝑔

 and 𝜎 represent the mean and standard deviation of albedo 

measurements in the corresponding interval. This filter is applied independently in data bins defined by 10-degree 

zenith angle intervals, following the application of filters F1 to F11. At the end of this process, approximately 43 % 

of the original data was discarded, with 14 % removed due to solar altitude (F5). Table 1 provides details on each 

filter's conditions, the variables affected, the number of passing data points, and those discarded. 

Tab. 1: Detail of the filtering process applied to the diurnal measurements 

Filter condition variable output % discarded 

F1 Eq. (9) Gh 20749 6.9 

F2 Eq. (9) Gd 18304 17.9 

F3 Eq. (9) Gb 21724 2.5 

F4 Eq. (9) Gd 19930 10.6 

F5 𝛼𝑠 > 10° all 19102 14.3 

F6 Eq. (10) Gh, Gd, Gb 18549 16.8 

F7 𝑓𝑑 < 1.03 Gh, Gd 16860 24.3 

F8 𝑘𝑡 < 0.20 &  𝑓𝑑 > 0.80 Gh, Gd 21313 4.4 

F9 𝑘𝑡 < 1 Gh 22269 0.0 

F10 0 ≤ 𝜌𝑔 ≤ 1 Gg, Gh 19866 10.8 

F11 |𝜌𝑔 − 𝜌
𝑔

| ≤ 3𝜎 Gg, Gh 15949 28.4 

all - all 12698 43.0 

 



 

 

Fig. 2a: Diffuse fraction vs clearness index. 

 

Fig. 2b: Albedo vs zenith angle. 

Fig. 2: Result of the filtering procedure: original data in gray and data resulting from the filtering procedure in blue (those that pass 

all filters). 

2.4. Methodology and performance indicators 

The methodology employed in this work has three parts. First, the filtered dataset was employed to update the 

coefficients of the previously described albedo models. For Model 1, the arithmetic mean of the albedo measurements 

was calculated using Eq. (2). For Models 2 to 4, regression algorithms were utilized to minimize the mean squared 

error between measured and modeled albedo. For this part, the measured diffuse fraction was used for Models 3 and 

4, without imposing any optimization parameter constraints. In the second part of the study, the performance of the 

diffuse fraction models RA2a and SO2 was evaluated. Finally, in the third part, the performance of Models 3 and 4 

was reassessed using diffuse fraction estimates derived from the RA2a and SO2 models. 

It is worth noting that the coefficients from previous work (Rodríguez-Muñoz et al, 2022) were not used due to 

differences in the experimental setup and grass height, which may affect the albedo. Efforts were made to maintain 

a relatively constant grass height in a wide circle around the setup throughout the year, but the data may contain 

seasonal trends, as differences in rainfall and air temperature between summer and winter may seasonally affect the 

albedo of the grass. Random sampling and cross-validation were used to update the model coefficients and 

performance indicators, with 60% of the data used for training and 40% for validation. To ensure consistency of 

results, the 60/40 split was repeated 1,000 times and the final results are the average of the coefficients and 

performance indicators, respectively.   

The model performance was evaluated using three indicators: mean bias deviation (MBD), root mean squared 

deviation (RMSD), and Kolmogorov-Smirnov integral (KSI). These are defined as follows: 

𝑀𝐵𝐷 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖),

𝑛

𝑖=1

          𝑅𝑀𝑆𝐷 = [
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

]

1 2⁄

,          𝐾𝑆𝐼 = ∫ |𝐹(𝑦) − 𝐹(𝑦)|𝑑𝑦,
1

0

 (11) 

where 𝑦𝑖  represents the reference value (albedo measurement), 𝑦𝑖 is the model estimate, and 𝐹(𝑦) and 𝐹(𝑦) are the 

cumulative probability distributions of 𝑦𝑖  and 𝑦𝑖 , respectively. These metrics share the same units as 𝑦𝑖, making them 

dimensionless for albedo measurements. They can also be expressed relatively (rMBD, rRMSD, and rKSI) as a 

percentage of the mean measurement value. Each indicator provides unique information about the model’s accuracy: 

MBD shows the average bias of the estimates, RMSD measures the spread of the estimation errors, and KSI 

quantifies the statistical distance between the cumulative distributions of measurements and estimates. In order to 

provide a unified representation of these indicators, the Combined Performance Indicator (CPI) has been defined, 

integrating the three metrics into a single one: 

𝐶𝑃𝐼 =
1

3
(|𝑟𝑀𝐵𝐷| + 𝑟𝑅𝑀𝑆𝐷 + 𝑟𝐾𝑆𝐼) (12) 

A similar global indicator has been proposed in Gueymard (2014) and has been successfully used in evaluating 

diffuse fraction models (Abal et al., 2017) and correction factors for diffuse irradiance measurements (Rodríguez-

Muñoz et al., 2021). 



 

3. Results 

3.1. Locally adjusted albedo models performance 

Table 2 shows the locally adjusted coefficients for the albedo models. As mentioned before, the values presented in 

this table correspond to the average of the 1000 iterations of the sampling and cross-validation procedure.  

Tab. 2: Coefficients for locally adjusted models.  

Model 
 coefficients 

𝜌𝑛/𝜌𝑛𝑏 𝑏1 𝑏2 𝑏3 𝜌𝑑 

1 - Arithmetic average, Eq. (2) 0.2021 - - - - 

2 - Tuomiranta et al. (2021), Eq. (3) 0.1651 0.0039 - - - 

3 - Tuomiranta et al. (2021), Eq. (4) 0.1692 0.9406 - - 0.1862 

4 - Modified Gueymard (1987), Eq. (5) 0.1618 -3.5233 -0.0209 0.0005 0.1859 

The standard deviations of the coefficients were also calculated, which turned out to be at least 30 times smaller than 

the averages, the small variability indicates the robustness of the models and the adjustment methods. The parameters 

of the models from Tuomiranta et al. (2021) models satisfy the constraints b1 ∈ [0, 2] and ρbn ≤ ρd, indicating that 

these constraints do not need to be imposed during the parameter adjustment procedure, at least for the data used in 

this particular study. The values of the coefficients ρn, ρnb, and ρd are slightly lower than those previously adjusted 

by Rodríguez-Muñoz et al. (2022). For instance, in the case of model 1, the average value decreased from 0.2209 to 

0.2021. This discrepancy is likely due to differences in soil humidity or grass height, as investigated by Dickinson 

(1983), which found that albedo values are inversely proportional to grass height. The coefficients describing the 

variation of albedo with the zenith angle, b1, b2, and b3, remain practically unchanged from those reported in 

Rodríguez-Muñoz et al. (2022).  

The performance indicators for the four models are shown in Table 3 as a percentage of the mean albedo value, 𝜌
𝑔

=

0.2021. The indicators and overall ranking are similar to those presented in Rodríguez-Muñoz et al. (2022). All 

models show a mean bias close to zero (<1%). Based on rRMSD, the models are ranked from worst to best from 1 

to 4. Based on rKSI, they are ranked 1, 2, 4, and 3, while based on the combined indicator CPI, they are ranked 1, 2, 

4, and 3. In general, model performance improves with complexity: bivariate models (3 and 4) perform best, followed 

by univariate models (2), and the constant model (1) performs worst. Category III models (bivariate) perform 

similarly. Model 3 performs slightly best according to CPI, followed closely by model 4. Although Model 4 has the 

lowest rRMSD, this does not compensate for the difference in rKSI (statistical similarity of distributions). The 

difference in performance is small enough to consider them with similar accuracy.  

Tab. 3: Performance indicators for the four albedo models, expressed as a percentage of the mean measurement value, 𝝆
𝒈

= 𝟎. 𝟐𝟎𝟐𝟏. 

Model 
Relative performance indicators (%) 

rMBD rRMSE rKSI CPI 

1 - Arithmetic average, Eq. (2) 0.0 12.2 8.9 7.0 

2 - Tuomiranta et al. (2021), Eq. (3) -0.7 9.4 2.6 4.0 

3 - Tuomiranta et al. (2021), Eq. (4) 0.0 8.3 1.7 3.3 

4 - Modified Gueymard (1987), Eq. (5) 0.0 7.9 2.6 3.5 

Complementing the previous analyses, Fig. 3 shows the comparison of albedo measurements with model estimates 

in ρg vs. θz plots. Model 2 (Fig. 3a) generally describes the increasing behavior of albedo with solar zenith angle but 

does not capture the data scatter due to variations in cloud conditions. Model 3 (Fig. 3b) on the other hand, captures 

both the zenith angle dependence and the cloud condition dependence. Model 4 shows a similar behavior o its plot 

is omitted. 



 

 

Fig. 3a: Model 1 and 2. 

 

Fig. 3b: Model 3. 

Fig. 3: Comparison between albedo measurements and estimates from different models. 

3.2. Diffuse fraction model performance 

As mentioned in the introduction, there is a plethora of phenomenological models for estimating the diffuse fraction 

from clearness index, solar zenith angle and other variables. A comprehensive review considering the performance 

of 140 published models against quality 1-minute data from 54 sites worldwide was published in 2016 (Gueymard 

and Ruiz-Arias, 2016). This work assessed the models with their original coefficients, which were derived from 

diverse datasets under different climatic conditions. Furthermore, several coefficients were derived from hourly 

datasets and used for 1-minute estimation of diffuse fraction. A more recent review (Yang 2022) considered 10 of 

the best diffuse fraction models against a 1-min dataset with five years of 1-min data from several sites worldwide. 

In this case, the coefficients where adjusted by grouping the data by broad climate zones, making for 5 or 6 sets of 

coefficients covering the whole globe. If anything, this search for a “quasi-universal” diffuse fraction model strongly 

suggests to us that there is no such thing. For a good performance, a diffuse fraction model must be adjusted to local 

data.  

Tab. 4: Performance indicators for the for the two diffuse fraction models, expressed as a percentage of the mean measurement value, 

𝒇
𝒅

= 𝟎. 𝟑𝟕𝟏𝟎. 

Model 
Relative performance indicators (%) 

rMBD rRMSD rKSI CPI 

RA2s -7.7 33.4 10.1 17.1 

S02 -11.5 33.5 12.3 19.1 

 

Fig. 4a: RA2s model. 

 

Fig. 4b: S02 model. 

Fig. 4: Comparison between diffuse fraction measurements and estimates from different models. 

 



 

Both models for the diffuse fraction chosen for this work (RA2s Eq. (6) and SO2 Eq. (7)) were chosen for their 

relative simplicity (they ultimately depend on the clearness index and the solar zenith angle) and because locally 

adapted sets of their coefficients are available for the site of interest in this work (Abal et al., 2017). The performance 

of these models with the particular dataset used in this work is shown in Table 4 and Fig. 4. These models estimate 

the 10-min diffuse fraction with an rRMSD of approximately 33%, and some underestimation is observed, as shown 

in Fig. 4 and in the negative mean bias reported in Table 4. This may be due to the use of coefficients adjusted for 

the hourly data on the 10-minute data. However, in the context of this paper, it is of interest to assess the impact on 

the accuracy of albedo estimates of using even diffuse fraction models. For this purpose, the use of poor diffuse 

fraction models is useful, as it can provide an upper limit to the reduction in accuracy of albedo estimates.  

3.3. Impact of diffuse fraction estimation on bivariate albedo models 

In this section, the impact of using phenomenological diffuse fraction models in combination with bivariate albedo 

models is evaluated. In this regard, Table 5 shows the performance indicators for the bivariate models considering 

three different scenarios, which differ in the way fd is treated. In the first scenario, the experimental measurement of 

the diffuse fraction is used as a baseline (as in Table 3). In the second and third scenarios, fd is estimated using the 

RA2s and SO2 models, respectively. The results show that the use of the phenomenological diffuse fraction models 

leads to a slight decrease in the performance metrics, with the smallest impact on rRMSD, followed by rMBD and 

rKSI. The models for the baseline scenario are unbiased, and they acquire small biases when diffuse fraction models 

are used. A negative bias in the fd estimation models translates to negative bias in albedo model 4 (subestimation of 

albedo) and to a positive bias in model 3 (overestimation of albedo). However, in both cases the mean biases are 

small, under 1%. Interestingly, the rRMSD (i.e., dispersion) of these models is almost unaffected by the use of diffuse 

fraction models. The performance of models 3 and 4 with fd estimation still exceeds that of categories I and II, 

demonstrating the feasibility of combining empirical diffuse fraction models with category III ground albedo models 

when diffuse irradiance measurements are not available. 

Tab. 5: Performance indicators for the four albedo models across three different scenarios, expressed as a percentage of the mean 

measurement value, 𝝆𝒈 = 𝟎. 𝟐𝟎𝟐𝟏. 

Model 
Approach 

for fd 

Relative performance indicators (%) 

rMBD rRMSD rKSI CPI 

3 - Tuomiranta et al. (2021), 

Eq. (4) 

Experimental 

(baseline)  
0.0 8.3 1.7 3.3 

RA2s 0.3 8.3 1.9 3.5 

SO2 0.5 8.3 2.0 3.6 

4 - Modified Gueymard (1987), 

Eq. (5) 

Experimental 

(baseline). 
0.0 7.9 2.6 3.5 

RA2s -0.7 8.0 2.9 3.9 

SO2 -0.5 7.9 2.7 3.7 

Complementing the previous analysis, Fig. 5 shows the rMBD and rRMSD for the best model 3 in scenarios 1 and 

2, categorized by the cosine of the zenith angle (cos θz, x axis) and the clearness index (kt, y axis). The clearness 

index correlates with the diffuse fraction and allows to distinguish between different sky conditions. Three different 

conditions can be identified: clear sky (kt > 0.6), partly cloudy sky (0.6 > kt > 0.2), and overcast sky (kt < 0.2). These 

plots show under which sky conditions the performance of the model decreases. The results for the other cases are 

similar. The graphs use the same color scale to facilitate comparison, although in some cases the scale is saturated to 

ensure adequate visualization.  

In Rodríguez-Muñoz et al. (2022), besides the general superiority of the category III models over the category I and 

II models, it was shown that they also exhibit a more homogeneous behavior when discriminating between sky 

conditions (diffuse fraction and solar elevation), i.e., the rRMSD and rMBE matrices are more uniform. This 

characteristic is maintained when diffuse fraction models are introduced, as can be seen in Fig. 5c and Fig. 5d. In 

these figures, it can be observed that the matrices do not change significantly in the range of the cosine of the zenith 

angle greater than 0.3, i.e. zenith angles less than about 70°, where the solar irradiance is higher. For zenith angles 

greater than 70°, more significant differences are observed, especially under clear sky conditions (kt > 0.6). It is also 

important to note that in these conditions the solar irradiance is lower, since these data correspond to the moment 

close to sunrise and sunset. Therefore, if the metrics were weighted by solar irradiance, the impact of diffuse fraction 



 

models would be even smaller. 

 

Fig. 5a: Model 3. 

 

Fig. 5b: Model 3. 

 

Fig. 5c: Model 3 combined with RA2s. 

 

Fig. 5d: Model 3 combined with RA2s. 

Fig. 5: rMBD and rRMSD matrix for the first and second scenario for model 3, expressed as a percentage of the mean measurement 

value, 𝝆
𝒈

= 𝟎. 𝟐𝟎𝟐𝟏. The scale of the figures is the same to facilitate comparison. The white regions indicate that no data is available 

for that condition. 

In the previous analysis, the coefficients adjusted for the specific site were used for the diffuse fraction models. The 

use of the original coefficients was also evaluated, but these results are not shown in this article because they are 

very similar. This reinforces the earlier conclusion: using empirical diffuse fraction models in conjunction with 

bivariate albedo models represents a robust option when diffuse solar irradiance measurements are not available. 

4. Conclusions 

The coefficients of four empirical albedo models for grass representative of the Pampa Húmeda region of South 

America were updated. The model coefficients were slightly lower than in the previous work (Rodríguez-Muñoz et 

al. 2022), probably due to differences in grass height between the measurement campaigns. Similarly, the 

performance indicators were very similar, and the conclusions regarding model performance are consistent with 

previous studies. The bivariate models show the best performance, followed by the univariate models and finally the 

constant models. 

While the bivariate models perform better, their implementation is more challenging as they require two solar 

irradiance measurements: global and diffuse on a horizontal plane. In this context, with the aim of simplifying the 

implementation of these models, the impact of using empirical diffuse fraction models as a substitute for diffuse solar 



 

irradiance measurements was evaluated, eliminating the need for one measurement. Despite the slight decrease in 

performance when diffuse fraction models are included, their superiority over categories I and II is evident. This 

supports the viability of combining empirical diffuse fraction models with category III albedo models, potentially 

creating a fourth category with performance between categories II and III while maintaining simplicity of 

implementation. These conclusions are considered valid regardless of whether the original coefficients or the locally 

adjusted coefficients are used for the diffuse fraction models, providing robustness to the models in this fourth 

category.  
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