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Evaluation of Satellite and Reanalysis Models for
Solar Irradiance Estimation in Northwest Argentina

Rubén Ledesma Rodrigo Alonso-Suárez Germán Salazar Fernando Nollas and Olga Vilela

Abstract—Accurate solar resource assessment is critical for the
development of solar energy projects, especially in regions with
complex climatic and geographic conditions. This study evaluates
the performance of various satellite-based and reanalysis models
in estimating global horizontal irradiance (GHI) in Northwestern
Argentina, focusing on two locations characterized by different
environmental conditions: La Quiaca and Salta. Five satellite-
based models (CAMS Heliosat-4, NREL NSRDB, GOES DSR,
LSA-SAF MDSSFTD, and GOES G-CIM) and two reanalysis
datasets (MERRA-2 and ERA-5) were analysed and compared
with high-quality ground-based measurements recorded between
2020 and 2023. The results show that the G-CIM and NSRDB
models provide the most accurate irradiance estimates, effectively
minimising errors even in challenging environments with extreme
altitude or variable terrain reflectivity. At the 10-minute time
scale in Salta, the G-CIM model yields a root mean squared
deviation (RMSD) of 23.4% and a mean bias of 4.8%, whereas
the NSRDB model records an RMSD of 26.6% and a mean
bias of –4.2%. In La Quiaca, both models achieve RMSD values
below 20% and mean biases under 1%. At the 60-minute scale, in
Salta, G-CIM and NSRDB exhibit RMSDs of 20.7% and 19.7%,
with corresponding mean biases of 5.4% and –3.6%, respectively,
while in La Quiaca they maintain mean biases below 1% and
RMSDs of 13.2% for G-CIM and 12.6% for NSRDB. Conversely,
the MERRA-2 and ERA-5 reanalysis models showed higher
uncertainties, particularly in areas with significant microclimatic
variations. The study highlights the importance of using locally
validated satellite data for accurate solar resource assessment
and emphasises the need for site-specific adjustments when
applying global irradiance models. These findings contribute
to improved planning and decision-making for solar energy
projects in Northwest Argentina and provide valuable insights
for researchers, policy makers and industry professionals.

Index Terms—Global Horizontal Solar Irradiance, Satellite
Models, Reanalysis Data, Solar Resource Assessment, Northwest
Argentina.

I. INTRODUCTION

IN order to simulate and financially analyse solar energy
projects, it is crucial to accurately assess the solar resource

at the project location. Uncertainty in solar irradiance data is
the primary factor influencing the economic risk assessment
of large-scale photovoltaic (PV) solar power plants [1], [2].
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Financial and engineering project analysis should ideally be
based on at least a decade of site solar irradiance measure-
ments, quality controlled according to an approved protocol.
This type of long-term, quality-controlled measurement is
usually not available, as it is unlikely that such consistent
measurements have been taken in the vicinity of any given
project site. In this context, close enough means less than 15-
20 km from the project location, the breakthrough distance at
which simple satellite estimates provide better accuracy than
extrapolation or interpolation of ground measurements [3], [4].

To overcome this problem, modelled data from different
sources can be used, such as satellite-based models (satellite
solar data) or numerical atmospheric models (reanalysis solar
data). These modelled data are typically available elsewhere,
some freely available and some commercially available, with
varying spatial and temporal resolution. Although they appear
to solve the problem, modelled data can suffer from significant
uncertainties that can affect the medium-term viability of solar
energy projects [5], [6] due to inaccurate estimates of the
return on investment. Therefore, these models need to be vali-
dated against ground-based data before use to diagnose biases
and inaccuracies and to decide which source of information is
most appropriate for a given region. The validity or relevance
of a modelled dataset within a climatically affine area is then
determined by comparing the simultaneous estimated values
with those measured at a site within the area [7]–[11].

Satellite models are based on moderate-resolution, high-
frequency geostationary imagery. They provide information
on cloud cover over large areas with an intra-hourly update
frequency of 10 or 15 minutes and a spatial resolution of 500-
1000 metres per pixel. Since large solar power plants can cover
more than one satellite pixel (e.g. for nominal power higher
than 10 MW), satellite models are suitable for estimating the
solar irradiance at the PV panels and thereby the output power
[6]. It is worth noting that satellite models have the advantage
of using actual cloud data rather than simulated cloud data,
such as that from numerical atmospheric models, making them
the most effective tool for assessing solar resources through
remote sensing [9], [12]–[14]. Therefore, the use of satellite
databases is recommended over reanalysis data for solar re-
source assessment, a claim that needs to be locally validated
with good quality ground-based measurements, especially in
complex terrains.

Northwest Argentina is a region of great interest for study-
ing solar resources using satellite databases, for several rea-
sons. One of them is the rich resource availability of the
region, which exceeds the world average in its western part. In
addition, the geographical variability and altitude differences
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generate microclimates that can be very different over short
distances, from tens to hundreds of kilometres, significantly
affecting the behaviour, distribution and average values of
solar radiation. This also leads to very different ground albedo
conditions, which are known to affect solar satellite data
[15]–[17]. Finally, there is a lack of operational radiometric
station networks with traceable sensors, quality control and
proper maintenance. Although studies have reported on the
performance of some satellite models for estimating solar
irradiance in the Northwest region of Argentina [18]–[20],
there is still no analysis that compares the estimates of several
different models in a standardised framework. That is, a
uniform evaluation of the different sources against measured
data using the same quality procedures over the same period
and sites.

This work then aims to fill this gap for Northwest Ar-
gentina by providing a thoughtful benchmark of several freely
available modelled solar databases over different time scales.
Two sites representing different conditions in the region are
analysed: La Quiaca (LQ, 3,450 m above sea level) and Salta
City (SA, 1,200 m above sea level). Due to their geographical
characteristics, these sites have very different climates and
cloudiness behaviour. For example, while clear sky days are
the most common situation in LQ, different types of cloudy
days can be observed in SA. Both sites are challenging for
remote estimation of solar irradiance, but for different reasons.
The SA site is close to a variable albedo terrain, which can
confuse satellite models, especially depending on the pixel
size. The LQ site has an extreme altitude and a very high
ground albedo, which satellite models often misinterpret unless
given special treatment. Taken together, both sites represent
common situations and climates in the region. The main contri-
bution of this article is therefore to establish a model ranking in
the region, and to assess their typical accuracy under a unified
framework at these representative sites. This sheds light on
which modelled database is most suitable for solar radiation
estimation in the area, a much-needed information for research
studies, policy makers and solar industry practitioners. In
addition, this article also presents a novel locally implemented
model using the Cloud Index Model (CIM) framework, one
of the most widely used modelling strategies for producing
accurate and simple solar satellite models.

The remainder of this article is organized as follows. Section
II describes the sites, the measured data and the quality
control procedures used. Section III presents the satellite and
reanalysis data sets used for comparison. Section IV gives
a brief introduction to the evaluation metrics, and Section
V presents the results and discussion. Finally, Section VI
summarises our conclusions.

II. GROUND MEASUREMENTS

The sites are detailed in Table I, including their identifi-
cation code, location (deg), elevation (in meters above sea
level), and their corresponding classification in the updated
Köppen-Geiger climate map [21]. Both sites are located close
to the Southern Tropic (latitude -23.44), one to the north
and the other to the south. The SA station is located on the

experimental campus of INENCO at the National University
of Salta and is maintained periodically. It is a pre-Andean
urban site with frequent cloud formation due to its location
in a valley close to the Andes (Lerma Valley). The climate is
a subtropical highland, temperate, with dry winters and cold
summers (Cwb). The LQ station is part of the monitoring
network of the Argentine National Meteorological Service.
It is a semi-arid Andean cold steppe (BSk) with one of the
highest sunshine hours values in Argentina. Both stations
are equipped with class A or B pyranometers (according to
ISO 9060:2018 standard) to measure global solar horizontal
irradiance (GHI). An Eppley PSP pyranometer was used at the
SA station and a Kipp & Zonen CMP11 pyranometer at the LQ
station. Data were recorded at 1 minute intervals, with each
value representing the average of six instantaneous samples
taken every 10 seconds. This study analyses data collected
over two years for each station: from 2020 to 2021 for LQ
and from 2022 to 2023 for SA.

Table I: Ground Measurement Stations

CODE Site Latitude Longitude Altitude (m) Climate

SA Salta -24.72 -65.42 1233 Cwb

LQ La Quiaca -22.10 -65.60 3468 BSk

The one-minute GHI measurements were subjected to the
quality control procedure defined in Ref. [22]. The full proce-
dure requires diffuse horizontal irradiance, but since this study
only works with the GHI, a shorter version was used. Table II
describes the filters used, where E is the solar constant, S is
the Earth-Sun distance correction factor, θz is the solar zenith
angle, and kt is the dimensionless clearness index, defined as
the ratio of the GHI to the horizontal irradiance at the top of
the atmosphere.

Table II: Quality control filters applied to the measurements.

Filter Description

F1 GHI < 1.5 E S (cos(θz))1.2 + 100W/m2

F2 GHI > (6.5331− 0.065502 θz + 1.8312E-4 θ2z)/(1 + 0.01113 θz)

F3 kt < 1.4 & (90− θz) < 10◦

The results of the quality control process applied to the
SA and LQ stations demonstrate a significant reduction in
the number of records after applying the filters. For the SA
stations, out of a total of 329952 records, 253284 passed the
Altitude Filter, representing approximately 77% of the initial
dataset. For the LQ stations, out of a total of 524592 records,
362328 passed the Altitude Filter, which corresponds to 69%
of the original dataset. These results highlight the effectiveness
of the filter in refining the dataset, ensuring that only the most
reliable records remain for subsequent analysis.

The measurement series were analyzed using the Standard
Normal Homogeneity Test (SNHT) [23] to determine if the
series displayed any changes in its behaviour resulting from
an alteration or deviation in its normal trend. No alterations
were detected in the series with p-values of 0.8 and 0.9.
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III. MODELS

Five satellite-based and two reanalysis-based estimation
models for GHI are assessed. These models are described in
this section. The GHI estimates can be freely downloaded from
respective online portals. A local implementation of cloud
index satellite model [24], [25] is also included.

A. CAMS Heliosat-4

Heliosat-4 [26] is a fully physical model that employs a
rapid yet precise approach to the libRadtran radiative transfer
model [27]. This model utilizes various satellite data and
the reanalysis database from the Copernicus Atmosphere
Monitoring Service (CAMS). Cloud properties are derived
from Meteosat Second Generation (MSG) satellite images at
a 15-minute time rate using an adapted APOLLO scheme
(AVHRR3 Processing Scheme Over Clouds, Land, and Ocean)
[28]. The operational version of Heliosat-4 takes the form of
lookup tables, enabling rapid computation. This model has
already been evaluated in the region in studies such as [18],
[19]; however, these studies do not report comparisons with
other modeled solar estimation data sets. This dataset was
downloaded from the SoDa website with a time resolution
of 15 minutes. The MSG pixel size over the region is about
16 km.

B. NREL NSRDB

The National Solar Radiation Database (NSRDB) uses the
Physical Solar Model (PSM) [29]. This is a two-stage model
that integrates cloud properties from GOES satellites (4×4 km,
30-minute intervals), aerosol optical depth from MODIS and
MERRA-2 (0.5° resolution, interpolated to 4 × 4 km), and
surface albedo from MODIS MCD43GF product (30 arc-
seconds, 8-day intervals).

The PSM uses two radiative transfer models: REST2
for clear sky conditions and FARMS (Fast All-sky Radia-
tion Model for Solar applications) [30] for all-sky condi-
tions. FARMS uses precalculated cloud transmittances and
reflectances parameterized as functions of solar zenith angle,
cloud phase, optical thickness, and particle size. This approach
makes FARMS about 1000 times faster than traditional two-
stream methods while maintaining comparable accuracy. Data
processing includes re-gridding inputs to 4× 4 km resolution
and gap filling for missing cloud properties. For this work, the
PSM v3.2.2 data was retrieved from the NSRDB website at a
10-minute time resolution.

C. GOES DSR

The GOES Downward Shortwave Radiation (DSR) product,
developed by NESDIS/NOAA, uses the Enterprise Processing
System (EPS) Shortwave Radiation Budget (SRB) hybrid
algorithm to estimate incident solar radiation reaching the
Earth’s surface and reflected solar radiation exiting the top of
the atmosphere from visible and near-infrared GOES satellite
imagery. This process involves several steps, including sensor
data calibration, atmospheric correction for clear sky cases,

and determination of the amount of clouds and aerosols present
in the atmosphere [31].

The SRB algorithm is run at the pixel level, assigning each
pixel to one of four categories: clear sky without snow/ice,
clear sky with snow/ice, water cloud, and ice cloud. Two
estimation paths are used: direct if the required Level 2 (L2)
input data is available, and indirect otherwise. The direct path
adapts the CERES [32], [33] model using precomputed lookup
tables based on the Fu and Liou RTM, taking into account L2
satellite products such as surface albedo, aerosol optical depth,
and aerosol single scattering albedo for clear sky scenes, and
cloud optical depth, radius, and top height for cloudy scenes.
The indirect path uses the climatological values of aerosol
optical depth and single scattering albedo for the given date if
the pixel is clear sky. If the pixel is cloudy, the atmospheric
transmission is estimated using the top of the atmosphere
albedo derived from the imager reflectances. This model in
the region of interest has a spatial resolution of 0.5× 0.5° in
latitude and longitude, and a temporal update frequency of 60
minutes.

It is important to note that this model exhibits a significant
number of gaps in its estimates, particularly for values with
a solar zenith angle (SZA) greater than 70°. To facilitate the
comparative analysis, these estimates were interpolated using
a method similar to that proposed in Ref. [34]. The GHI values
modeled by DSR were linearly interpolated based on the DSR-
modeled clearness index.

D. LSA-SAF MDSSFTD

The MSG Downwelling Surface Short-wave Radiation
Fluxes - Total and Diffuse (MDSSFTD) product is an instan-
taneous (every 15 minutes) estimate of the global and diffuse
downward shortwave radiation flux at the surface. The method
for retrieving this product consists of two separate modules:
one for clear sky and one for cloudy sky conditions [35],
[36]. The clear sky product uses the approach described in
Ref. [37]. This method, known as SIRAMix (Surface Incident
Radiation using Aerosol Mixtures), is a physical parameteriza-
tion method coupled to a pre-calculated lookup table (LUT) of
aerosol properties, consisting mainly of the direct and diffuse
transmittances of the different aerosol components and their
corresponding aerosol albedos. The LUT is generated using
radiative transfer models to vary aerosol loading, water vapor,
and solar zenith angle. The cloudy GHI retrieval method uses
the total shortwave cloud albedo at the top of the atmosphere
(TOA) obtained from the observed TOA reflectances of the
MSG. It uses the same aerosol estimates as in the clear sky
case, and cloud-related terms are determined using a simplified
radiative transfer model, similar to the method in Ref. [38].
Finally, these transmittances, namely the effective clear-sky
transmittance estimated using gases and aerosols and the cloud
transmittance estimated using the simplified radiative transfer
model, are used together to determine the GHI.

This model has an approximate spatial resolution of 3 km
with a 15-minute update frequency, and its estimates can be
downloaded in NetCDF format from https://datalsasaf.lsasvcs.
ipma.pt/PRODUCTS/MSG/MDSSFTD/.

https://datalsasaf.lsasvcs.ipma.pt/PRODUCTS/MSG/MDSSFTD/
https://datalsasaf.lsasvcs.ipma.pt/PRODUCTS/MSG/MDSSFTD/
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E. GOES G-CIM

The final satellite-based model tested in this work is a
locally implemented model. It is a Cloud Index Model (CIM)
implemented using visible channel images from the GOES-16
satellite, similar to Refs. [24] and [25]. The model formulation
is:

GHI = GHIcsk × F (η) with η =
ρ− ρmin

ρmax − ρmin
, (1)

where ρ is the Earth reflectance value obtained for each site
from the GOES-16 visible channel images, GHIcsk are clear
sky estimates from the Argpv2 model [39], F is a cloud
attenuation factor, and η is the cloud index [40]. The value
of ρmax was set to 80% as in Refs. [25], [41], and ρmin was
calculated as the average of the twenty minimum values of ρ in
a 300-hour moving window centered on the point of interest
as proposed in Ref. [18]. The cloud attenuation function is
defined as F (η) = (a ∗ η + b). The Argpv2 clear sky model
has a local adjustment for the study region of this work. The
values of a and b were locally calibrated for each site using
50% of the data in a shuffled cross-validation process. The
resulting parameters were a = −0.804 and b = 0.998 for SA,
and a = −0.807. and b = 1.000 for LQ.

F. MERRA-2

The Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2) [42] is a reanalysis dataset
developed by NASA with the Goddard Earth Observing Sys-
tem (GEOS-5.12.4) atmospheric data assimilation system [43],
[44]. It is used to estimate various atmospheric parameters,
including the downward shortwave irradiance, the GHI. The
dataset covers the period from 1980 to the present with a
latitude-longitude spatial resolution of 0.5 × 0.625º and a
time step of 60 minutes. This model improves the modeling
of aerosols and related information affecting clear sky solar
irradiance from the previous MERRA version 1 [45]. It also
includes other physical improvements, such as water vapor
content and cloud modeling [46], that affect solar irradiance
estimates under all sky conditions. As a result of these updates,
the dataset is expected to provide better solar irradiance
performance than its predecessor. The data are freely available
at https://disc.gsfc.nasa.gov/datasets?project=MERRA-2.

G. ERA-5

ERA5 is the fifth-generation atmospheric reanalysis model
developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF), covering the period from January 1940
to the present. This model provides hourly estimates of nu-
merous climate variables, including atmospheric, terrestrial,
and oceanic aspects. The data are presented on a horizontal
grid of 30 km, and the atmosphere is binned using 137
levels ranging from the Earth’s surface to an altitude of
80 km [47]. The model is based on the Integrated Fore-
casting System (IFS) Cy41r2, which was operational until
2016. Thus, ERA5 benefits from a decade of advances in
model physics, core dynamics, and data assimilation com-
pared to the previous ERA-Interim data set. In addition to

Table III: Summary of Models Used

Model Availability Temporal Coverage

Resolution Area

(min)

Heliosat-4 2004 1,15,30,60 -66° to 66°

to present in both latitude

and longitude

NSRDB 2019 10,30,60 all region

to 2023

DSR 2020 60 all region

to present

LSA-SAF 2004 15 all region

to present

MERRA-2 1980 60 all region

to present

ERA-5 1940 60 all region

to present

GOES-16 Images 2017 15, 10 from 2020 all region

to present

a significantly improved horizontal resolution of 0.25° lat-
itude (31 km), ERA5 provides hourly output. This model
combines satellite and in-situ observations in its estimates
using advanced modeling and data assimilation techniques;
therefore, ERA5 has been shown to produce more accurate
simulations compared to previous generations [48], [49]. The
data are freely available at https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-single-levels?tab=download.

H. Models summary

Table III summarizes the characteristics of the models used
in this study, which are available for the region.

IV. METHODS

The various available estimates are validated against ground
measurements from both sites at different time bases, ranging
from the native frequency of each model to sixty minutes
(one hour). This requires temporal integration of ground mea-
surements and model estimates originally obtained at intra-
hourly frequency (Heliosat-4, NSRDB, LSA-SAF, G-CIM).
This section describes the data processing and performance
metrics used for the evaluation.

A. Performance Metrics

The most common performance indicators in the field of
solar resource assessment have been covered by Ref. [50];
these include the Mean Bias Error (MBE), Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Kolmogorov-
Smirnov Integral (KSI), and the statistic proposed by Taylor,
known as the Taylor Skill Score (SS4). The first three metrics
are defined as follows,

MBE =

∑n
i=1(yi − xi)

n
, (2)

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download.
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download.
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MAE =

∑n
i=1 |yi − xi|

n
, (3)

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − xi

)2

, (4)

where x and y are the measured and estimated values, re-
spectively, and n is the sample size. The MBE measures the
systematic bias that a model can introduce in a long-term
evaluation, while the MAE and RMSE measure the dispersion
of the error using absolute and quadratic norms, respectively.
Because of its greater sensitivity to outliers, the RMSE is often
used in this area. Both dispersion metrics are reported here for
completeness. The three indicators are presented in relative
terms as a percentage of the mean of the measured values,
referred to here as MBE (%), MAE (%), RMSE (%).

The KSI, defined in Ref. [51], measures the statistical
similarity between the measured and estimated values. It is
calculated with the equation (5) by integrating the absolute
difference between the two empirical cumulative probability
functions (Fx for x and Fy for y) over the entire range
of the target variable (in this case the GHI, denoted as z
in the equation for mathematical purposes). This provides a
negatively oriented metric (the lower, the better) that quantifies
the statistical difference between the two data sets. Typically,
a low RMSE results in a low KSI, although they formally
measure different aspects of estimated performance.

KSI =
∫

|Fx(z)− Fy(z)| dz (5)

Finally, the SS4 metric [52] is a statistical measure that
evaluates the overall performance of a model, taking into
account both the standard deviation and the correlation. In
this way, it balances the amplitude of the model’s variation
relative to the observations and the strength of the linear
relationship between the two signals being compared. The
SS4 values range from [0,1], with higher values indicating
a better performing model and lower values indicating poorer
performance. It is calculated as follows:

SS4 =
(1 + ρ)4

4(σr + 1/σr)2
, (6)

with

σr =
σy

σx
and ρ =

√
(1/n)

∑n
i=1(yi − ȳ)(x− x̄)

σxσy
(7)

where σx and σy , and x̄ and ȳ are the standard deviation and
the mean value of x and y, respectively.

V. RESULTS

The performance results are presented in Table IV. Perfor-
mance metrics are reported at 10-minute, 15-minute and/or
hourly time bases, depending on the original time scale of each
model. Models with higher time resolution can be evaluated
at the lower time resolutions. In this case, the higher time
base is given by the NSRDB and G-CIM models, which
provide estimates at 10-minute granularity. These models can
be upscaled to 15 minutes and 1 hour and can therefore be

evaluated at all time scales. CAMS and LSA-SAF estimates
are originally at 15 minute granularity and are thus evaluated
at this and hourly resolutions. All models are evaluated on an
hourly time base, which is a common basis for all models and
a relevant use case for solar energy applications.

At the 10-minute scale in SA, NSRDB shows a lower
mean absolute error (MAE = 15.8% vs. 17.1%) and a better
alignment with the actual data distribution as measured by the
Kolmogorov-Smirnov Integral (KSI = 5.0 vs. 12.7). However,
G-CIM achieves a lower root mean square error (RMSE =
23.4% vs. 26.6%) and a slightly higher skill score (SS4 =
0.84 vs. 0.83), indicating less error dispersion. In LQ, both
models exhibit low and comparable bias (MBE = 0.8% vs.
0.9%). NSRDB maintains a lower MAE (11.2% vs. 12.1%)
and a better KSI (2.9 vs. 5.3), while G-CIM has a slightly
lower RMSE (19.3% vs. 19.9%). Since both models achieve
the same SS4 in LQ (0.85), their overall performance in this
site is similar. Overall, NSRDB excels in terms of lower
absolute error and better distribution fit, while G-CIM offers
lower error dispersion. The choice between the two depends
on the preferred metric for a given application. However,
some practical considerations should be taken into account.
NSRDB estimates can be downloaded directly from its web
portal, making it readily accessible, whereas G-CIM requires
retrieval of GOES-16 products and construction of the model.
On the other hand, NSRDB is not an operational model and
its estimates for Latin America are not regularly updated.
This offers a space por G-CIM application, as once calibrated
and locally implemented, its availability depends solely on
access to GOES-16 imagery, making it a viable option for
real-time applications. Figure 1 shows a scatter plot of the
G-CIM estimates against the measurements at the 10 minute
time scale for the SA (top) and LQ (bottom) sites, with the
data concentration shown in colour. It can be seen that the
higher concentration is around the x = y diagonal, while larger
deviations are less frequent.

The results for these two models (NSRDB and G-CIM) at
the 15-minute time scale are very similar to those obtained
at the 10-minute time scale. Their relative ranking for each
metric and their qualitative assessment are the same. For both
sites (SA and LQ) the NSRDB has the lowest mean absolute
error (MAE = 15.2% and 10.9% respectively), the best fit
to the actual data distribution (KSI = 5.1 and 2.5) and the
highest skill score (SS4 = 0.85 and 0.87). G-CIM again has the
lowest RMSE (23.0% and 18.1% for SA and LQ respectively)
and a higher KSI (12.5 and 4.9) compared to NSRDB. The
additional models on this time scale (CAMS and LSA-SAF)
do not provide better performance on any metric. CAMS and
LSA-SAF generally have a higher bias than NSRDB and G-
CIM at both sites, with the exception of the CAMS model at
SA, whose bias is similar to the previous two (MBE = -4.9%
vs. -4.2% of NSRDB and 4.9% of G-CIM). The CAMS has
the highest bias in LQ (MBE = -9.1%), while the LSA-SAF
has the highest bias in SA (MBE = 9.5%). In SA, the CAMS
estimates perform better than the LSA-SAF for all indicators.
However, for LQ the situation is exactly the opposite. In both
locations, CAMS and LSA-SAF show worse performance than
NSRDB and G-CIM on a 15 minute time scale, with higher
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Table IV: Multi-scale performance assessment. The mean value of the normalization for the MBE, the MAE and the RMSE
is of 480 W/m2 for SA and of 623.1 W/m2 for LQ.

SA LQ

Model MBE(%) MAE(%) RMSE(%) KSI SS4 MBE(%) MAE(%) RMSE(%) KSI SS4

60 min

NSRDB -3.6 12.4 19.7 5.1 0.89 0.8 7.8 12.6 1.7 0.93

G-CIM 5.4 15.8 20.7 11.9 0.89 0.8 9 13.2 3.8 0.92

CAMS -5.1 17.2 25.4 4.8 0.86 -9.1 15.1 23.3 9.1 0.83

LSA-SAF 9.3 18 27.5 10.2 0.83 3.2 10.9 19.4 3.5 0.85

MERRA-2 31.5 34.8 51.1 31.5 0.64 ≃0 13.6 22 2.5 0.80

ERA-5 4.1 21.1 31.6 9.8 0.74 -3.9 13.7 22.2 4.6 0.80

DSR 1.3 19.9 27.5 10.2 0.83 -2.9 17.1 22.5 6.5 0.78

15 min

NSRDB -4.2 15.2 25.3 5.1 0.85 0.8 10.9 18.5 2.5 0.87

G-CIM 4.9 16.8 23 12.5 0.84 0.8 11.6 18.1 4.9 0.87

CAMS -4.9 19.5 29.3 5.1 0.81 -9.1 17.3 27.4 9.1 0.77

LSA-SAF 9.5 20.1 31.4 11.2 0.78 3.3 13.2 24 4.5 0.79

10 min

NSRDB -4.2 15.8 26.6 5 0.83 0.8 11.2 19.9 2.9 0.85

G-CIM 4.8 17.1 23.4 12.7 0.84 0.9 12.1 19.3 5.3 0.85

Figure 1: Scatter plots of the G-CIM model estimates versus
measurements at 10 minute resolution. (bottom) Salta (SA);
(down) La Quiaca (LQ).

performance metrics and lower skill scores.

On an hourly time scale, the seven models can be compared.
The NSRDB shows the best performance for almost all metrics
at both sites, the only exception being the MBE at SA, for
which the DSR estimates show the lowest values (MBE =
1.3%). For most models, the MBE is between ±5.5%, with the
exception of the LSA-SAF satellite model and the MERRA-2
reanalysis data. Notably, the ERA-5 reanalysis data is also in
this range with a bias of 4.1%, which is comparable to that
of the best performing satellite-based models. The MERRA-
2 estimates are largely biased in SA (MBE = 31.5%) and
almost unbiased in LQ (MBE≃0), which is a rather unusual
situation. This suggests a significant problem with the cloud
representation by this model, so that it performs much better in
a mostly clear site (LQ) than in a mixed site (SA) where clear
and cloudy skies alternate. Based on the MAE, RMSE and SS4
values, three and two groups of models can be displayed in
SA and LQ respectively. In SA, the first group is made by the
NSRDB and G-CIM with MAE between 12.4% and 15.8% and
RMSE between 19.7% and 20.7%, and the best SS4 (0.89). In
the second group (CAMS, LSA-SAF, DSR) the MAE ranges
from 17.2% to 19.9%, RMSE from 25.4% to 27.5%, and SS4
from 0.83 to 0.86. The third group is made by the reanalysis
datasets in which MAE is between 21.1% and 34.8%, RMSE
between 31.6% and 51.1%, and SS4 between 0.74 and 0.64.
The two groups at LQ can be formed by {NSRDB, G-CIM,
LSA-SAF} and {CAMS, MERRA-2, ERA-5, DSR}. In the
first group MAE ranges from 7.8% to 10.9%, RMSE from
12.6& to 19.4%, and SS4 from 0.85 to 0.93, while in the
second group MAE is between 13.6% and 17.1%, RMSE
between 22.0% and 23.3%, and SS4 between 0.83 and 0.78.
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The KSI reveals different ability of the models to represent
data distribution. In SA, the best models from this metric’s
view are the CAMS (4.8) and NSRDB (5.1). In LQ most
models display low value of this metric, and 4 models can be
identified as best performing in this sense, being NSRDB (1.7),
MERRA-2 (2.5), LSA-SAF (3.5) and G-CIM (3.8). Overall,
NSRDB is the best-performing model at this time scale in
both locations and G-CIM remains a substantial alternative,
very close in performance. CAMS and LSA-SAF demonstrate
moderate performance, while MERRA-2, ERA- 5, and DSR
show significantly higher errors and lower skill scores, making
them less suitable for high-accuracy applications.

VI. DISCUSSION

The presented results show that the G-CIM and NSRDB
models have the best performance among all evaluated models
across the different time scales. Both models are based on
images derived from the GOES-16 satellite, as is the DSR
model. However, it is important to note that the DSR model
has a temporal resolution of 60 minutes and an approximate
spatial resolution of 55 km, in contrast to the 10 minute
temporal and 4 × 4 km spatial resolutions of G-CIM and
NSRDB, respectively. This highlights the relationship between
model performance and temporal and spatial resolution, al-
though DSR modelling and reduced input information may
also have an effect. For the sites studied, the performance
of the DSR model is similar to that of reanalysis models
such as ERA-5 and MERRA-2, a trend also reported in a
separate evaluation carried out at two sites in Uruguay [53].
In addition, CAMS and LSA-SAF in SA report performance
metrics similar to those found in Refs. [20], [54]. In particular,
Ref. [54] indicates that CAMS performs poorly at a site
approximately 55 km northwest of the SA station.

Regarding the performance of the reanalysis data sets ERA-
5 and MERRA-2 in LQ, the former shows a slight negative
bias, while latter shows no bias. However, both models per-
form similarly in terms of mean absolute error and root mean
square error. This suggests that although MERRA-2 does not
have an average bias, it still produces significant deviations.
Therefore, if the objective is to avoid average bias, MERRA-
2 appears to be more suitable than ERA-5 at this location.
Conversely, the MERRA-2 model shows the least appropriate
performance in SA. This issue is probably related to the spatial
resolution of the models. The SA station is located with
several microclimates separated by less than 40 km, which
undoubtedly affects the performance of the solar irradiance
modelled data. In any case, large RMSE values are found at
SA for both reanalysis datasets and CAMS and DSR satellite
estimates, indicating deficiencies in cloud retrieval due to pixel
size and viewing angle for satellite models and pixel size and
modelling for reanalysis.

As shown in Refs. [11], [18], [25], the use of a CIM
strategy based on GOES imagery with local adjustment is
one of the best options for estimating the GHI. In this work,
the G-CIM performance metrics are competitive with those
of the NSRDB, the best performing model. Considering that
the NSRDB model includes fine physical modelling and also

uses the GOES-16 images at the same time rate (10 minutes),
it can be concluded that the simple G-CIM model performs
quite well. Furthermore, its performance is within the expected
ranges according to the literature [12], close to the best. It
should also be noted that the performance of the NSRDB
model in LQ shows a lower performance compared to other
desert sites [10], which could be due to a more complex
ground albedo terrain.

A. Performance as a function of time scale

Figure 2 shows the RMSE performance of all models
at different time scales. The colours of the bars indicate
different models. It can be seen that the RMSE decreases with
increasing time scale, as is clear for the green models (NSRDB
and G-CIM), the dark blue model (CAMS) and the salmon
pink model (LSA-SAF). As expected, the reduction is more
pronounced from 15 minutes to 1 hour than from 10 minutes to
15 minutes. The same increase in metrics with time scale can
be seen in Table IV for MAE and SS4. This effect is related to
the temporal variability of solar radiation at the different time
scales, which is greater at higher time resolution and therefore
more difficult to model. In contrast, the KSI metric is more
stable between time scales, being almost the same for all time
scales in SA and showing a slight decrease from 10 and 15
min to 1 h in LQ.

(a) RMSE(%) at different time scales in SA

(b) RMSE(%) at different time scales in LQ

Figure 2: RMSE(%) of the evaluated models at different
temporal resolutions. (a) Salta (SA); (b) La Quiaca (LQ)

.
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B. Performance as a function of the Sun’s zenith angle

Figures 3a and 3b show the RMSE of the different models
as a function of Solar Zenith Angle (SZA) for the hourly
time scale at both sites. It can be observed that the DSR and
CAMS models have higher error rates for large SZA values.
Although this trend is also present in the other models, it
is more significant for DSR and CAMS, being greater than
100%. For DSR, this increase may be directly related to the
interpolation used to fill gaps in the model when SZA° > 70°.
In the case of CAMS, the increased error is most likely due
to parallax, as the sites are located at an extreme limit of the
model coverage area with very large satellite viewing angles,
a limitation previously reported in Ref. [25].

(a) RMSE(%) in SA

(b) RMSE(%) in LQ

Figure 3: RMSE(%) of the evaluated models at hourly reso-
lution grouped by SZA ranges. (a) Salta (SA); (b) La Quiaca
(LQ)

.

C. Probability distribution analysis

The comparison of probability density distributions for
global horizontal irradiance (GHI) is shown in Figure 4. It
shows the distribution of both the measured data and the G-
CIM modelled estimates at temporal resolutions of 10, 15
and 60 minutes from left to right, and for SA (top) and
LQ (bottom), illustrating the strengths and limitations of the
model at different time scales. At the 10-min resolution, larger
discrepancies are evident, particularly at high irradiance levels
(above 900 W/m²), where G-CIM tends to overestimate the

probability density function, resulting in sharper and right-
shifted peaks. This behaviour indicates a limited sensitivity
of the model to extreme clear sky conditions or rapid intra-
day variability, the latter typically associated with intermittent
partly cloudy conditions. As the temporal resolution increases
to 15 and 60 min, the differences between the modelled and
measured distributions decrease. For both stations, the im-
provement is observed at medium and high irradiance values,
while at low irradiance values the agreement is quite good
over all time scales. The improvement can be attributed to the
smoothing effect of temporal aggregation, which acts as a filter
that suppresses short-term fluctuations and emphasises broader
statistical patterns. Nevertheless, the reduction in temporal
resolution limits the ability of the model to capture short-lived
extreme events and is an important limitation for applications
requiring high-frequency accuracy.

(a) KDE SA

(b) KDE LQ

Figure 4: Kernel density estimation (KDE) plots showing
the probability density of measurements (red) and G-CIM
estimates (blue), evaluated at temporal resolutions of 10, 15,
and 60 minutes. (a) Salta (SA); (b) La Quiaca (LQ).

D. Other factors influencing uncertainty

The differences in accuracy between the various satellite and
reanalysis models evaluated in this work for these two sites
can be attributed to several factors, including local climatic
characteristics, altitude, satellite spatial and temporal resolu-
tion, and the methods used for cloud retrieval and irradiance
estimation.

Salta (SA), a pre-Andean urban site, is characterised by
frequent cloud cover due to its location in the Lerma Valley.
This makes cloud retrieval more challenging for satellite
models, as cloud dynamics and varying surface albedo from
the surrounding terrain introduce additional sources of error.
In contrast, La Quiaca (LQ), a semi-arid Andean steppe,
experiences significantly more sunshine hours and more stable
clear sky conditions, making it generally easier for satellite-
based models to accurately estimate solar irradiance as long as
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the cloud-free albedo remains low (e.g. below 25%). Altitude
also plays a crucial role, as La Quiaca, at 3,468 m above
sea level, has a thinner atmosphere, which reduces scattering
and absorption effects. Some models, particularly reanalysis
datasets such as MERRA-2 and ERA-5, may not fully account
for these altitude effects, leading to discrepancies in irradiance
estimates. Meanwhile, Salta, at 1,233 m above sea level, is
influenced by complex microclimates and the surrounding to-
pography, which further challenge the accuracy of the models.

Another key factor influencing model performance is spatial
and temporal resolution. Models with coarser spatial resolution
(e.g. ERA-5, MERRA-2, DSR) tend to perform worse in Salta
due to the heterogeneity of its terrain and climatic conditions,
while models with higher resolution (e.g. G-CIM and NSRDB)
achieve better accuracy by capturing local variations more
effectively. Similarly, models with higher temporal resolution,
such as NSRDB and G-CIM, which use GOES-16 satellite
imagery with updates every 10-15 minutes, outperformed
others by better capturing short-term irradiance variations,
which is particularly important in regions with frequent cloud
variability, such as Salta.

The cloud retrieval methodology and atmospheric inputs
also contributed to the differences in accuracy. Reanalysis data
(e.g. ERA-5, MERRA-2) showed higher uncertainty at Salta,
probably because they rely on global atmospheric models
that do not resolve local cloud microphysics or topographic
effects in detail. In contrast, G-CIM and NSRDB, which use
real-time cloud data from GOES-16 imagery, show superior
performance because they rely on actual cloud observations
rather than simulated cloud cover from numerical models.
However, even these models had some errors, particularly at
high solar zenith angles, where satellite-based cloud retrievals
tend to be less reliable.

Terrain characteristics and surface albedo also affected
model accuracy. Salta’s mixed urban and natural landscape
results in variable ground reflectivity, which can introduce bias
in satellite models, particularly those with coarse pixel resolu-
tion. In La Quiaca, the combination of high altitude and high
surface reflectivity (resulting from the semi-arid environment
and light-coloured terrain) can cause some models to either
over- or underestimate irradiance if they do not accurately
account for albedo effects.

Overall, it is the combination of the previous factors that
explains the performance of the different models. In Salta,
the combination of frequent cloud cover, complex terrain
reflectivity and lower spatial resolution in some models led
to higher errors, especially for reanalysis-based estimates such
as MERRA-2 and ERA-5. Conversely, in La Quiaca, the more
stable and higher altitude conditions allowed most models to
perform better, although challenges remained for those that did
not correctly account for atmospheric transmission and surface
albedo effects.

These findings underscore the importance of selecting mod-
els that are tailored to regional characteristics. In areas with
high cloud variability, such as Salta, satellite-based models
with frequent updates (e.g. NSRDB, G-CIM) are preferable,
while reanalysis models should be used with caution or require
local adaptation. In high altitude, semi-arid environments such

as La Quiaca, models that correctly account for altitude-related
atmospheric effects and surface reflectivity are essential to
minimise bias. In addition, higher spatial resolution and site-
specific model calibration are crucial to improve accuracy, es-
pecially in regions with microclimatic variations and complex
topography.

E. Strengths and Limitations of the study

This study presents a comprehensive comparative assess-
ment of satellite and reanalysis models for estimating so-
lar irradiance in northwestern Argentina. One of its main
strengths is the detailed evaluation of several models, in-
cluding both satellite and reanalysis-based approaches, under
exactly the same conditions, using high quality ground-based
measurements from two representative sites in the region. In
addition, the models were evaluated at 10, 15 and 60-min
time resolutions, allowing a more thorough characterisation
of their performance. Another major strength lies in the local
adaptation of the models, in particular the implementation
of the G-CIM model, which is calibrated using GOES-16
imagery. This approach provides a more reliable reference with
improved accuracy compared to global databases. Finally, this
study makes a significant contribution to regional knowledge
as it is the first comprehensive analysis of its kind in the region,
providing critical insights for researchers and professionals in
the solar energy sector.

However, the study has some limitations. Firstly, the geo-
graphical coverage is limited to two locations (Salta and La
Quiaca), which means that the results cannot be generalised
to the whole region without further studies in additional
locations. Another limitation is the availability of data, as some
models, such as the NSRDB, only provide data up to 2023,
making it impossible to evaluate up to the present day.

Despite these limitations, the findings of this study provide
valuable guidance for selecting appropriate models for solar re-
source assessment in northwestern Argentina. Future research
could extend this analysis by including additional measure-
ment sites and exploring correction methods to improve the
accuracy of lower performing models.

VII. CONCLUSIONS

A benchmark study was conducted on solar irradiation
data sources at various sub-hourly scales for Northwest Ar-
gentina, where seven modeled data sources—including differ-
ent satellite-based schemes and two reanalysis datasets—were
evaluated using two years of high-quality, ground-based mea-
surements from two climatically distinct sites. The semi-
empirical G-CIM model, locally adjusted and based on GOES-
East satellite images, proved to be the most accurate option,
demonstrating superior overall metrics and spatial consistency.
In particular, at the 10-minute scale in Salta, G-CIM yielded
an RMSD of 23.4% with a mean bias of 4.8%, compared to
NSRDB’s RMSD of 26.6% and bias of –4.2%. At the 60-
minute scale, NSRDB and G-CIM in Salta reported RMSDs
of 19.7% and 20.7% (with biases of –3.6% and 5.4%, respec-
tively), while both models achieved RMSD values below 20%
and mean biases under 1% in La Quiaca. NSRDB estimates
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also exhibited strong overall performance. In contrast, the
MERRA-2 reanalysis data showed significant uncertainties in
the Salta region—with a bias reaching 31.5% and RMSE up
to 51.1%—indicating that its use in such complex microcli-
matic conditions is not recommended without rigorous post-
processing based on high-quality measurements. Conversely,
in La Quiaca, MERRA-2 demonstrated performance compara-
ble to other models, although the superior temporal and spatial
resolution of GOES-16-based models (G-CIM and NSRDB)
resulted in notably better performance.

The significant differences in model accuracy between the
two sites are directly related to climatic variability and resolu-
tion issues. In Salta, where several microclimates exist within a
40 km radius, factors such as cloud retrieval accuracy and pixel
size are critical. For solar energy applications where uncer-
tainty is a key concern, G-CIM and NSRDB are recommended.
In contrast, the reanalysis models, particularly MERRA-2 and
ERA-5, generally show weaker performance in these complex
environments and should only be used when supplemented by
appropriate site-adaptation procedures.

This study, which is the first of its kind in Latin America,
fills a critical gap in the literature and provides industry pro-
fessionals with quantitative insights—such as RMSD values
ranging from 12.6% to 26.6% and mean biases from under 1%
to as high as 31.5%—to assess the applicability of different
irradiance estimation models for solar energy projects in the
region.
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