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Abstract

A regionalization of different characteristics of the solar resource is performed

for Uruguay and surrounding areas (Southeastern South America). The input

information consists of daily satellite estimates of Global Horizontal Irradi-

ation (GHI) generated in a regular grid using a low uncertainty empirical

satellite-based model which was specifically adapted for the region. Clus-

ters are derived from the climatological annual cycle of monthly irradiation

and clearness index and, separately, from time-series of monthly variability.

The solar irradiation variability in each cluster is compared with El Niño

South Oscillation (ENSO) signal. A high negative correlation is observed

between ENSO and solar irradiance, most predominantly over February to

May and November to December, particularly for the latter. This means that

in a strong El Niño/La Niña year, solar irradiation values for the November-

December period in Uruguay will be smaller/higher than the climatological
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average. These results are in agreement with the ones obtained for rainfall

in other studies.
Keywords: Solar Radiation, Clustering, ENSO, k-means.

1. Introduction1

The classification of an area into regions with similar climatic charac-2

teristics can guide the design of ground measurement networks suited for3

long-term renewable energy studies. The location of the measuring sites, if4

not adequate, may affect climatological studies related to the renewable ener-5

gies technology potential and long-term resource assessment. This is the case6

of solar irradiation and wind intensity, that highly vary in both space and7

time. These measurements, along with satellite images and/or atmospheric8

models, are the main tools to assess renewable energies resources. Associated9

uncertainties are directly translated to the financial risk of renewable energy10

projects. The regionalization also allows to better understand the impact of11

different large-scale climatic phenomena, such as the El Niño South Oscilla-12

tion (ENSO) on the regional renewable resource availability. These effects13

are better characterized over regions than over specific sites. This work fo-14

cuses on the monthly mean of global solar irradiation in a horizontal plane15

at ground level (GHI) and its monthly variability. The input information16

consists of daily satellite estimates of GHI obtained from a low uncertainty17

empirical satellite-based model, which was specifically adapted for the re-18

gional characteristics (Alonso-Suárez et al., 2012, 2014). The original hourly19

estimates, which are computed for this work for a 15 years time span on a20

regular grid of 31 points covering the region, are monthly averaged to analyze21
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its annual cycle and interannual variability. 22

Clustering techniques identify patterns in data without any a priori infor- 23

mation, namely expert knowledge of predefined patterns. These techniques 24

have been used for regionalization around the globe (Diabate et al., 2004; 25

Zagouras et al., 2013, 2014, 2015; Polo et al., 2015; Watanabe et al., 2016). 26

In Diabate et al. (2004) a set of hierarchical clustering methods are applied 27

to annual cycles of clearness index’s monthly averages at 62 sites in Africa 28

to obtain different climatic zones across the continent. Other authors prefer 29

to use non-hierarchical clustering techniques, such as the k-means method. 30

Polo et al. (2015) use this methodology with daily sunshine hourly records 31

to obtain a set of well-defined climatic regions for Vietnam. The cluster- 32

ing is based on a variability index for each site that is calculated from the 33

Cumulative Distribution Function (CDF) of daily solar irradiation obtained 34

from the sunshine hours. Zagouras et al. (2014, 2015) also used the k-means 35

algorithm, but applied to daily gridded irradiation records estimated with 36

the satellite SUNY model (Perez et al., 2002). The clustering is applied af- 37

ter reducing the dimensionality with Principal Component Analysis (PCA). 38

The output was a set of regions for solar energy large-scale electricity ap- 39

plications in the state of California. Zagouras et al. (2013) used the same 40

algorithm with satellite cloud information for Greece to guide the design of 41

a solar radiation monitoring network. Watanabe et al. (2016) classified 47 42

ground measurement stations in Japan according to different metrics of so- 43

lar radiation series for engineering applications. All these studies highlight 44

the importance of identifying regions with similar solar variability, as it is 45

associated with solar power fluctuations that can be a major challenge for 46
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their grid integration. Clustering techniques have proven to be an efficient47

approach for regionalization purposes.48

In this article we provide a first solar irradiation regionalization of Uruguay49

and surrounding areas. Different characteristics of solar irradiation are ana-50

lyzed, including resource monthly averages and anomalies. One of the goals51

of regionalization is to improve the description and understanding of the im-52

pact of large-scale climatic phenomena on the solar resource. In particular,53

the impact of the El Niño South Oscillation (ENSO) on this area is well54

known (Aceituno, 1988; Grimm et al., 2000), being the main climatic forcing55

in the region. Its impacts on local climate has been well established for some56

meteorological variables, in particular, on precipitation (Pisciottano et al.,57

1994) and streamflow (Mechoso and Pérez-Iribarren, 1992). However, the58

impact of ENSO on the regional solar irradiation has not been documented59

yet, and is a major contribution of this work.60

This article is organized as follows. Section 2 and Section 3 describe the61

data and methodology, respectively. The results of the regionalization are62

presented in Section 4; Subsection 4.1 is based on the monthly annual cy-63

cles of mean irradiation and clearness index, while Subsection 4.2 focuses the64

variability of the monthly clearness index (monthly anomalies). Section 565

describes the relationship between the ENSO and the clearness index vari-66

ability through correlation (Subsection 5.1), conditional stratification (Sub-67

section 5.2) and seasonal averages (Subsection 5.3). Finally, in Section 6 and68

Section 7, we present the final discussion and conclusions, respectively.69
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2. Data 70

The region under study is the country of Uruguay and close areas, a 71

part of the broader Pampa Humeda region of the Southeastern part of South 72

America. It is located between 30◦S and 35◦S (latitude) and 53◦W and 73

58◦W (longitude). The region is mainly rural and of low altitude, barely 74

exceeding 500 meters in few places. Figure 1 illustrates the area location 75

with a topography map for further reference. 76

Atlantic Ocean

Uruguay

Brazil

Argentina

Figure 1: Topography map of the region with altitude data retrieved by the Terra-Aster

NASA satellite information. Most of the area show heights under 500 m above the sea

level.

The study requires long-term solar radiation data with adequate spatial 77

coverage over the region. Solar radiation networks were first established in 78

the country circa 2010, which implies that the ground measurements time 79
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span is inadequate to define a climatology or appropriate to describe inter-80

annual variability. Further, ground measurements are not able to provide81

a high space resolution as the sites are located in sparse points in a larger82

territory. We, therefore, turn to solar irradiation estimates based on satel-83

lite imagery which can provide two decades data with a spatial resolution of84

few kilometers. Subsection 2.1 describes the methodology to generate hourly85

and daily GHI estimates, while Subsection 2.2 introduces the climate index86

associated to ENSO.87

2.1. Solar irradiation estimates88

Solar irradiation at the surface can be accurately estimated using models89

that use as input geostationary satellite images (Perez et al., 2002; Rigollier90

et al., 2004; Ceballos et al., 2004; Cebecauer et al., 2010; Alonso-Suárez et al.,91

2012; Qu et al., 2017; Laguarda et al., 2020). As the images are regularly92

available at a rate of more than two per hour and a nominal resolution93

of 1 km or less, they can be used as input to model a highly fluctuating94

phenomena like solar radiation. Satellite based models for snow free areas95

can use solely the visible channel images to quantify the cloudiness, which96

is the first factor affecting solar radiation availability at ground level. In97

colder sites, where snow might occur, the infrared images can be used to98

differentiate snow from clouds, as they both present a high albedo in the99

visible spectrum but differ in their temperature. More complex models (Qu100

et al., 2017) use multi-spectral satellite images to quantify cloud properties101

and then infer the ground solar irradiation. Satellite based models for solar102

irradiation assessment can be classified into physical (Noia et al., 1993b)103

or empirical (Noia et al., 1993a), depending on their formulation. Physical104
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models attempt to model the radiative transfer thorough the atmosphere, so 105

they require a detailed knowledge of the atmospheric state, including cloud 106

type and cloud phase, water vapour content, aerosol optical depth, among 107

others. The uncertainty of these models highly depend on the availability and 108

quality of their input information. On the other hand, empirical models rely 109

on simple statistical relationships between the ground solar irradiation and 110

different variables that can be modelled, measured or calculated, including 111

satellite information. These models are potentially accurate if high quality 112

measurements are available in the target area to adjust their coefficients. 113

The main disadvantage of statistical models is that the local adjustment can 114

not be extrapolated globally. Some of the state-of-the-art models that are 115

used worldwide for solar resource assessment do not fit perfectly in these two 116

categories, like the SUNY model (Perez et al., 2002) or the former Heliosat 117

versions (Rigollier et al., 2004; Beyer et al., 1996), and they are referred as 118

hybrid. These hybrid models have a physically-based formulation but some 119

of their parameters are adjusted using ground measurements. 120

In this work we use an empirical satellite-based model that was specifi- 121

cally adapted for the region to estimate ground level solar global irradiation 122

at a horizontal plane (Alonso-Suárez et al., 2012, 2014). It uses GOES-East 123

visible channel images of South America to estimate hourly irradiation via a 124

statistical regression. This model was originally proposed by Tarpley (1979) 125

and Justus and Paris (1986), and afterward was modified by Alonso-Suárez 126

et al. (2012), resulting in a significant improvement on its performance. The 127

model coefficients were adjusted using ground data from the Continuous Solar 128

Irradiance Measurement Network (RMCIS) administrated by Universidad de 129
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la República’s Solar Energy Laboratory (LES, http://les.edu.uy). The sta-130

tions of this network are located at semi-rural environments and record data131

at one minute intervals as the average of 15 seconds samples using spectrally132

flat Class A pyranometers (according to the ISO 9060:2018 standard). These133

pyranometers are calibrated every two years as recommended by the World134

Meteorological Organization (WMO). The calibration is done in accordance135

with the ISO 9847:1992 standard using a Secondary Standard pyranometer136

that the LES maintain with traceability to the World Radiometric Reference137

(WRR, World Radiation Center, Davos, Switzerland). This simple regres-138

sion model can provide hourly GHI estimates for the region with a negligible139

mean bias and a mean uncertainty of 14% (root mean square deviation ex-140

pressed as a percentage of the mean measurements value). Daily values are141

obtained from the accumulation of the intra-day hourly values. The daily142

estimates (H) also show a negligible bias and have a reduced uncertainty143

of 7%. This performance is satisfactory when compared with commercial144

models commonly used in Europe and the USA, such as the Heliosat series145

(Rigollier et al., 2004; Qu et al., 2017) or the SUNY model (Perez et al.,146

2002). For this work we generate the satellite-derived daily irradiation data147

(H) in a regular grid of 1◦ × 1◦ latitude-longitude distance (see Figure 2) for148

the period between January 2000 to December 2016 (17 years). In Figure 2149

the sites referred with ’U’ lie within the Uruguayan territory, while A and B150

sites correspond to Argentina and Brazil respectively. The monthly averages151

(H) are obtained by averaging the daily values over each month. Months152

containing less than 15 valid days are discarded, leaving 189 out of the 204153

months of the period considered.154
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Figure 2: Locations used for generating monthly means of irradiation data (18 points in

Uruguay, 8 points in Brazil and 5 in Argentina).

To remove the daily and seasonal geometrical behavior of the solar irra- 155

diation due to the sun’s apparent movement, it is common practice to use 156

the clearness index, Kt, which isolates the variability due to changes in the 157

atmosphere (cloudiness, water content, aerosols, etc.) from the deterministic 158

geometrical trend. This variable is defined at a monthly basis as, 159

Kt =
H

H0

(1)

where H is the monthly average of the daily GHI measured values and H0 160

is the monthly average of the daily irradiation on an horizontal plane at the 161

top of the atmosphere, H0. This daily variable can be calculated analytically 162

for each site knowing the day of the year and latitude (Iqbal, 1983). 163
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2.2. El Niño164

There are several indices to quantify ENSO phenomenon. However, the165

most widely used index in research, monitoring and reporting is the Niño 3.4166

index (N3.4) which represents the average sea surface temperature anomaly167

over a region in the central equatorial Pacific Ocean, between 5◦N–5◦S and168

170◦W–120◦W (Trenberth, 1997). The N3.4 information is publicly avail-169

able at www.cpc.ncep.noaa.gov, from where we retrieved the data. Each170

monthly value corresponds to the average of the trimester centered in the171

corresponding month.172

3. Methodology173

In this work three solar radiation regionalizations are obtained through174

well known clustering techniques, based on yearly cycles of H and Kt, and on175

Kt monthly anomaly time series. Using the latter, the interannual variability176

of the solar resource and its seasonal varying association with ENSO climatic177

phenomena is studied in detail.178

3.1. Regionalization179

A first set of two regionalizations is performed over the annual cycles of180

Kt and H, i.e. 12 dimensions vectors, one for each of the 31 sites showed181

in Figure 2. We start with all the 31 sites and use the Ward hierarchical182

agglomerative algorithm (Wilks, 2011) to sequentially group the individuals,183

minimizing intra-group variance based on the Euclidian distance on the 12-184

dimensional space, up to a final number of clusters set to three. The centroids185

of these clusters constitute the seeds of the non-hierarchical k-means methods186
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that regroups all individuals to the nearest centroid (using the same distance 187

as before), recalculates the centroids and proceeds iteratively until individuals 188

no longer change of cluster. The combined algorithms do not include any a 189

priori information, such as seeds, being the final number of clusters the only 190

subjective parameter, which will prove a reasonable choice in view of results 191

in Section 4. Further details of both clustering methods can be found in 192

Duda et al. (2001); Wilks (2011). 193

Next, a different regionalization is made using theKt interannual anomaly 194

time series as the attribute at each site. First, we perform a principal compo- 195

nent analysis (PCA) of the initial data to reduce the dimensionality without 196

loosing significant information. The initial data here is a set of 31 vectors - 197

one per grid point- of 202 monthly anomaly values of Kt. The PCA converts 198

an initial set of correlated variables into a sequence of uncorrelated linear 199

combinations of said variables, the principal components, each contributing 200

a decreasing portion of the total variance. It is, then, possible to rank the 201

principal components and select a reduced set that explains most of the vari- 202

ance of the original data set. More details of the method can be found in 203

Jolliffe (2002); Bishop (2006). As it is shown in Subsection 4.2, five princi- 204

pal components are retained, which explain most of the associated variance. 205

Then, the same combined Ward plus k-means methodology is used with the 206

only difference that the distance d selected in this case, for both clustering 207

methods, is based on Pearson correlation instead of the Euclidean distance: 208

d(xi,xj) = 1− corr(xi,xj), (2)

where xi and xj are monthly Kt anomaly series. This distance is appropriate 209
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in this case because we aim to find clusters whose mean solar irradiation is210

well correlated with ENSO.211

3.2. Impact of ENSO in the regional solar radiation212

The second part of this work focuses on the study of the influence of213

ENSO on the monthly anomalies of Kt behavior. The work considers several214

stages, from exploratory to deeper analysis. Firstly, the Pearson correlation215

is computed between each cluster’s monthly Kt anomalies and the N3.4 in-216

dex time-series. Each cluster’s centroid is considered as it represents the217

average value within the cluster. An exploration of how these Kt anomalies218

stratify with the N3.4 index is also done. For stratification, two situations219

on N3.4 index are distinguished: greater than +0.5 ◦C (named positive) or220

less than −0.5 ◦C (named negative). By using the Wilcoxon-Mann-Whitney221

(WMW) classical non parametrical test, stratified according to the sign of222

simultaneous N3.4 values, we tested if the two stratified data sets came or223

not from the same probability distribution. Unfortunately, this test hypoth-224

esis could not be rejected in this work to a 95% confidence level using the225

monthly data time-series. Instead, we grouped the data considering that226

the influence of ENSO on the region ranges from October to next year July227

(Pisciottano et al., 1994), so we use the N3.4 index averaged during the peak228

season of extreme events (November to January, N3.4-NDJ) to stratify the229

monthly Kt anomalies from the preceding September to the following Au-230

gust. In other words, we tag a complete year (from September to August)231

according to N3.4-NDJ’s sign only, and then we apply the WMW test for232

each cluster. This is applied to the yearly monthly time-series and does not233

provide information of the seasonality of the effect.234
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To obtain more information from the stratification, in particular regarding 235

seasonality, the test is applied also to stratified data sets for each month 236

and for each cluster separately. In order to have enough data, the test is 237

performed over twelve 3-months moving-window periods. For instance, for 238

March, the test is performed with data corresponding to February, March 239

and April stratified with N3.4-NDJ> +0.5 ◦C and N3.4-NDJ< −0.5 ◦C. 240

Using this procedure, we identify seasons in which the stratified behavior of 241

Kt anomalies are categorically different. After identifying the season with 242

noticeable ENSO effect, the correlation is also computed for the periods 243

identified. To correlate these seasonal Kt anomalies with N3.4-NDJ index, 244

the Kt anomalies are averaged over each season and year, and Pearson’s 245

correlation is computed between each clusters seasonal averages and N3.4- 246

NDJ. Finally, this calculation is repeated for the same identified periods, but 247

for each of the 31 sites individually, without considering the clusters. This 248

allow us to obtain a correlation map in where the spatial distribution of the 249

ENSO effect can be seen. 250

4. Clustering results 251

Clustering results are shown in this section, first applied to the annual 252

cycles of H and Kt and then to the time series of monthly anomalies of Kt. 253

4.1. Clustering by climatological annual cycles 254

To distinguish regions according to the mean solar irradiation, the annual 255

cycle of H is used as input for the k-means/Ward algorithm. Figure 3 shows 256

the clustering result when the irradiation values are used. The procedure 257

is repeated using the monthly average of the Kt, to exclude the geometrical 258
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effect of latitude and the resulting clusters are shown in Figure 4. As can259

be seen in Figure 3, solar resource increases mainly from South to North260

(closer to Equator) with a slight east/west gradient, resulting in a south-east261

to north-west increasing trend. This result is in accordance with local so-262

lar maps (Abal et al., 2010; Alonso-Suárez et al., 2014). The arrangement263

of the clusters in Figure 4 (due mainly to cloudiness) has a stronger tilt in264

the spatial trend than in the case of the irradiation clustering, more aligned265

with the North-South line. Lowest Kt values are observed along the Atlantic266

Ocean coast (coast eastern to 55◦W longitude) while highest Kt values are267

observed North-West inland. Both spatial clustering provide an interesting268

interpretation of the solar resource space distribution in the region: the irra-269

diation trend is a result of combining a cloudiness trend (Kt), more aligned to270

increase for West to East and more affected by the Atlantic Ocean proximity,271

with the latitude effect, that is associated with a South to North increasing272

trend of the extraterrestrial irradiation (Ho).273

Figures 5 and 6 show, respectively for irradiation and Kt, the annual274

cycle for the entire domain (left) and the anomalous annual cycle for each275

cluster’s centroid (right). Irradiation annual cycle over the entire region has276

a minimum peak in June-July and a maximum peak in December-January,277

as expected. Kt annual cycle shows that, compared to the annual average,278

slightly more clouds are observed in local winter (June) and slightly more279

clear skies are observed in local summer (December-January). The center280

cluster has a similar behavior to the entire domain in both cases. The other281

two clusters exhibit an above and below trend in relation with the average.282

Irradiation largest anomalies are observed during intermediate seasons, and283
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Figure 3: The three clusters found (see shapes and/or colors) according to annual cycles

of monthly irradiation.

in August in particular. Cloudiness largest anomalies are observed also dur- 284

ing August-September, but also December-January. The minimum difference 285

between clusters is observed in local winter (June). 286

4.2. Clustering by seasonal and interannual variability 287

To identify regions with coherent seasonal and interannual variability of 288

the solar resource, the monthly anomalies of Kt in the period 2000-2016 are 289

used as the grid-point attributes. To simplify the time-series (31 vectors -one 290

per grid point- of 202 monthly anomaly values of Kt), leaving only the more 291

dominants effects, a PCA is applied. PCA returns a smaller dimensional sub- 292

space of the data that retains most of the original data information, reducing 293

15



Figure 4: The three clusters found (see shapes and/or colors) according to annual cycles

of monthly clearness index.

Figure 5: Mean annual cycle of monthly irradiation over the entire domain (left). Anoma-

lous annual cycle for each cluster centroid (right). The triangle, diamond and star shapes

correspond to Fig. 3.
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Figure 6: Mean annual cycle of monthly clearness index over the entire domain (left).

Anomalous annual cycle for each cluster centroid (right). The triangle, diamond and star

shapes correspond to Fig. 4

the complexity of the signal and filtering non typical effects. In this case, 294

the first five principal components represent 92.6% of the total variance, so 295

the clustering analysis is performed in the reconstructed time series based on 296

these 5 main modes. The clusters obtained (see Figure 7) show a dominant 297

latitudinal arrangement with a tilt perpendicular to the coast, contrary to 298

the clusters performed based on the irradiation annual cycle. 299

Considering that ENSO is the main source of interannual variability in 300

the region and its effects are known to vary both spatially and seasonally 301

(Aceituno, 1988; Cazes-Boezio et al., 2003), these clusters will be used in 302

the next section to quantify the ENSO effect. The rationale behind this 303

is that these clusters represent better the interannual variability of solar 304

irradiation in the region. These clusters were derived by using the correlation 305

as distance (Eq. (2)), thus they are better suited for the correlation analysis 306

in the following section. 307

17



Figure 7: The three clusters found (see shapes and/or colors) according to monthly clear-

ness index anomaly time series.

5. Influence of ENSO308

In this section we explore the interannual variability of the solar resource309

and its seasonal variations in association with ENSO climatic phenomena.310

For this analysis the Kt anomalies are used, filtering the seasonal cycle and311

climatological trend, and isolating the results from the seasonal influence.312

5.1. Correlation313

Table 1 shows the Pearson correlation between the monthly N3.4 Index314

and the clearness index anomaly for each cluster average (Figure 7), together315

with p-value of the Student test. As mentioned in Section 3, correlations316

computed in this way do not account for the seasonality of ENSO signal317
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in the local climate, which is known to be significant (Cazes-Boezio et al., 318

2003). The values obtained are still negative in all cases, although rather 319

small. Note that high N3.4 signal is associated with wetter and cloudier 320

weather in the region, therefore with lower clearness indices. Notably, the 321

northern cluster, where a strongest ENSO signal is expected (Pisciottano 322

et al., 1994), shows a correlation that is significant to a 99% confidence level 323

(1− p ≈ 99%), which is a very high value. 324

Correlation p-value

Southern Cluster (triangles) -0.105 0.1386

Central Cluster (diamonds) -0.137 0.0512

Northern Cluster (stars) -0.183 0.0091

Table 1: Correlation between the cluster’s centroids in terms of Kt anomaly and the N3.4

index. The third column indicates the p-value of the t-Student test.

5.2. Stratification 325

In this subsection, we explore how the clearness index stratifies with 326

ENSO. As mentioned in Section 3, the WMW test results are not clear to 327

quantify if data, stratified according to simultaneous N3.4 (> +0.5 ◦C and 328

< −0.5 ◦C), come from the same statistical distribution or not. According to 329

the local period of influence of N3.4 signal (Pisciottano et al., 1994), the test 330

is performed over the sets of data stratified according to N3.4-NDJ for each 331

cluster. In this scenario, the test rejects the null hypothesis with a confidence 332

of 95% for all the clusters. This means that the data behaves differently ac- 333

cording to the sign of N3.4-NDJ (p-values of 0.0021 for star-shaped sites in 334
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Figure 7, 0.0029 for diamond-shaped and 0.0426 for triangle-shaped). Fig-335

ure 8 shows the empirical Cumulative Distribution Functions (CDF) of Kt336

anomaly for each cluster for all data discriminated according to N3.4-NDJ337

> +0.5 ◦C (red) and N3.4-NDJ < −0.5 ◦C (blue), jointly with the all data338

CDF (black). The WMW test for each month separately was repeated and339

the three clusters showed different distributions (i.e. discard null hypothesis)340

mainly for March, April, November and December. In Table 2 the p-Values341

of the test performed over each month over the clusters are shown. We fur-342

ther analyze the influence of N3.4-NDJ within the year. Figure 9 showing343

the annual cycles of Kt anomaly conditioned to N3.4-NDJ.344

Figure 8: Empirical Cumulative Distribution Function (ECDF) of the monthlyKt anomaly

for each cluster discriminating according to ENSO-NDJ. The black dashed line denotes

the ECDF without ENSO discrimination.

5.3. Seasonability345

In light of the previous subsection’s results, we further analyze the in-346

fluence of ENSO signal on the Kt anomaly for specific seasons: November-347

December and February to May, which largely coincide with the main seasons348

20



Figure 9: Each chart shows the annual cycles of Kt anomaly for each cluster discriminating

according to N3.4-NDJ. The x-axis corresponds to the month. The dots represent the mean

value for each month, while the bars represent the standard deviation.

of influence of ENSO on the local climate (Pisciottano et al., 1994). In or- 349

der to correlate the Kt anomalies with N3.4-NDJ index, the Kt anomalies 350

are averaged over each season. The p-values for these seasons are shown in 351

Table 3, which shows that the Kt anomaly stratified according to the sign of 352

N3.4-NDJ belong to different probability distribution with a high confidence 353

level (1 − p ≥ 99%) for November-December season, but not for February 354

to May. Results, which capture the interannual variability of the seasonally 355

averaged influence of ENSO on the clearness index, are shown in Table 4. 356

Lastly, we analyze the spatial variability of ENSO influence on Kt anoma- 357

lies for these selected seasons independently of the clusters. A correlation 358

map between anomaly Kt series over the Nov-Dec and Feb-May periods with 359

the N3.4-NDJ index is performed and results are shown in Figure 10. For the 360

case of the Nov-Dec season, all sites are correlated with a 95% of confidence. 361

The same holds for the Feb-May case with the exception of the three coastal 362

points. Figure 11 shows the scatter plot of the clearness index, spatially 363
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Northern cluster Center cluster Southern cluster

(star) (diamond) (triangle)

Jan 0.339 0.773 0.554

Feb 0.335 0.693 0.987

Mar 0.026 0.035 0.064

Apr 0.006 0.012 0.030

May 0.056 0.056 0.169

Jun 0.103 0.117 0.537

Jul 0.235 0.179 0.837

Aug 0.176 0.133 0.939

Set 0.988 0.826 0.511

Oct 0.266 0.231 0.455

Nov 0.088 0.041 0.020

Dec 0.017 0.042 0.022

Table 2: p-values of the WMW test for twelve trimesters discriminated according to N3.4-

NDJ > 0.5oC and N3.4-NDJ < −0.5oC for each cluster.

November-December series February to May series

Southern cluster (triangle) 0.0006 0.8235

Center cluster (diamond) 0.0008 0.5034

Northern cluster (star) 0.0009 0.1388

Table 3: p-values of the WMW test for November-December and February to May of

clearness index anomaly discriminated according to ENSO > +0.5◦C and ENSO < −0.5◦C

for each cluster.
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November-December February to May

correlation p-value correlation p-value

Southern cluster (triangles) -0.704 0.0016 -0.519 0.0395

Central cluster (diamonds) -0.852 <0.0001 -0.586 0.0170

Northern cluster (stars) -0.868 <0.0001 -0.594 0.0152

Table 4: Correlation and p-value for between N3.4-NDJ and seasonally averaged clearness

index for each cluster. All correlations are statistically significant at 95% of confidence.

averaged over all sites that exhibit significant correlations (those depicted 364

in Figure 10), and the N3.4-NDJ index, evidencing the strong influence of 365

ENSO on the interannual variability of the solar resource in the selected sea- 366

sons. To emphasize this behavior, the linear regression is added to the plot 367

in order to visualize the trend. 368

6. Discussion 369

We characterized the spatio-temporal variability of the solar resource over 370

a region of Southeastern South America -containing Uruguay- based on 17- 371

years-long monthly series of solar irradiation. The 31-points gridded data 372

set was derived from hourly estimates based on satellite imagery with a spa- 373

tial resolution of few kilometers, validated against high accuracy radiometric 374

land stations. A cluster analysis was performed based on the mean annual 375

cycle (12 monthly values) of both solar irradiation and clearness index, ren- 376

dering three regions in each case. Solar irradiation grows from southeast 377

to northwest, consistent with existent solar maps, showing minimum spatial 378
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(a) Feb-May season (b) Nov-Dec season

Figure 10: Correlation map between each site and the N3.4-NDJ for February-May (left)

and November-December (right) seasons. Only sites with correlations significant to a 95%

confidence level are shown.

differences between clusters during -austral- summer. This is due to the lat-379

itudinal variation of daily irradiation at the top of the atmosphere combined380

with the spatial distribution of the clearness index (Kt). The latter shows381

clusters that arrange roughly from east to west, with Kt increasing inland382

throughout the year, a reflection of the larger humidity and cloudiness closer383

to the Atlantic coastline. Largest differences between clusters occur from late384

winter through early fall, when the clearness index in the most continental385

cluster is approximately between 6% and 9% grater that of the more coastal386

region.387
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(a) Feb-May season (b) Nov-Dec season

Figure 11: Linear regression of spatial average of the Kt February-May (left) and

November-December (right) anomaly of the sites with a 95% confidence correlation with

N3.4-NDJ. The linear regression added to the plot is not intended to model the behavior

of the Kt anomaly but to illustrate its trend.

Next, we focused on interannual variability, which may be of interest for 388

the management of an interconnected electric system with a large partici- 389

pation of solar energy. A cluster analysis was again performed, this time 390

using the entire Kt anomalies time series as the attribute for each grid point 391

and a correlation-based distance. The resulting clusters arrange from south- 392

southwest to north northeast, with a different orientation of those based on 393

the climatological annual cycle. Only the time series of the northernmost 394

cluster shows marginally significant anti-correlation with ENSO, the largest 395

source of interannual variability in the region. However, it is well known that 396

ENSO signal on the regional climate is seasonal dependent, a property that is 397

not captured in this cluster analysis. Therefore, an ENSO based stratification 398

of the clearness index time series associated with each cluster was performed 399
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on moving trimesters. The results confirm previous studies of ENSO influ-400

ence on the local climate (mainly on precipitation) that have identified late401

spring and early summer as the main season of influence and fall as a second402

-less significant- one. For November-December (February-May), the correla-403

tion of N3.4-NDJ with the centroid of every cluster is statistically significant404

to a 99% (95%) level, with increasing correlation to the north.405

Motivated by the previous results, correlation between N3.4-NDJ and sea-406

sonal meanKt for every grid point were computed for each season (November-407

December and February-May). The resulting correlation maps and associ-408

ated scatter plots quite clearly show the strength and spatial distribution of409

ENSO signal in those seasons. This is consistent with previous studies for410

other variables, although the strength of the correlation during February-May411

seems higher than what has been reported for precipitation.412

7. Conclusion413

A first comprehensive regionalization of Uruguay’s solar resource was per-414

formed with three different attributes of this variable, in all cases obtaining415

three spatial clusters. In the first case, based on GHI mean annual cycle, the416

results show the expected Southeast to Northwest gradient in total irradia-417

tion, consistent with previous solar resource climatological maps (Abal et al.,418

2010; Alonso-Suárez et al., 2014). In the second case, based on the clearness419

index mean annual cycle, the arrangement of the clusters shows an increase420

in Kt from East to West, associated with decreasing cloudiness inland. The421

third case, based on the interannual variability of the clearness index, results422

in clusters arranged from the Southwest to the Northeast. This last region-423
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alization depicts clusters with similar clearness index anomalies (indicating 424

temporal variability) at the monthly time-scale and can thus contribute to 425

the management of the solar resource in the region. It is well established that 426

ENSO has a significant seasonal impact on the climate of the region during 427

extreme phases of this cuasi-periodic oscillation of the climate system, known 428

as El Niño and La Niña. ENSO signal in the local hydro-climate is of such 429

relevance, that the associated N3.4 index is already included in the electric 430

system simulator used for planning and dispatch (Maciel et al., 2015), in 431

particular due to its impact in the hydroelectric component of the system. It 432

is thus natural to explore the relation between the solar resources and N3.4 433

index. In this sense, the most important result is the determination of a high 434

negative correlation between ENSO (as represented by N3.4 index) and solar 435

irradiation variations (as represented by Kt anomalies). This anti-correlation 436

is more significant over the February-May and November-December periods, 437

and allows to conclude with high confidence level (≥ 99% for the former pe- 438

riod and ≥ 96% for the latter) that during El Niño years lower solar resource 439

will be available in the region, specially over the center and Northern region. 440

The opposite occurs during La Niña years. 441

These results are very promising and potentially useful for the design of 442

solar irradiation measurements networks and for the management of inte- 443

grated electrical systems with increasing contributions of solar energy. A 444

second stage of this study, in order to obtain further and more detailed infor- 445

mation, would be to reassess the results with longer time series and higher 446

resolution grids, which may allow to include sub-seasonal variability in the 447

ENSO analysis. 448
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