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Abstract

Despite the growing awareness in academia and industry of the importance of solar
probabilistic forecasting for further enhancing the integration of variable photovoltaic power
generation into electrical power grids, there is still no benchmark study comparing a wide
range of solar probabilistic methods across various local climates. Having identified this
research gap, experts involved in the activities of IEA PVPS T161 agreed to establish a
benchmarking exercise to evaluate the quality of intra-hour and intra-day probabilistic irra-
diance forecasts

The tested forecasting methodologies are based on different input data including ground
measurements, satellite-based forecasts and Numerical Weather Predictions (NWP), and
different statistical methods are employed to generate probabilistic forecasts from these.
The exercise highlights different forecast quality depending on the method used, and more
importantly, on the input data fed into the models.

In particular, the benchmarking procedure reveals that the association of a point forecast
that blends ground, satellite and NWP data with a statistical technique generates high-
quality probabilistic forecasts. Therefore, in a subsequent step, an additional investigation
was conducted to assess the added value of such a blended point forecast on forecast quality.
Three new statistical methods were implemented using the blended point forecast as input.

Overall, skill scores (which quantify the relative improvement of the tested methods over
a reference forecast) of methods that use the blended point forecast ranges from 42% to 46%
for the intra-hour scenario and 27% to 32% for the intra-day scenario. Conversely, methods
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that do not use the blended point forecast exhibit skill scores ranging from 33% to 43% for
intra-hour forecasts and 8% to 16% for intra-day forecasts.

These results suggest that using a) blended point forecasts that optimally combine dif-
ferent sources of input data and b) a post-processing with a statistical method to produce
the quantile forecasts is an effective and consistent way to generate high-quality intra-hour
or intra-day probabilistic forecasts.

Keywords: probabilistic solar forecasting, benchmarking exercise, blended point forecast,
CRPS, IEA PVPS T16

1. Introduction1

Accurate forecasts of solar energy generation play a crucial role in effectively integrating2

solar power into existing grids and reducing associated expenses (Notton et al., 2018). This3

is because power output from photovoltaic plants (PV) is greatly influenced by weather4

conditions, making it highly variable. Consequently, having precise information about future5

solar power production is essential to minimize the need for costly balancing services and6

power reserves. Hence, enhancing solar forecasting models to increase the value of solar7

power generation becomes critically important. This work will focus in Global Horizontal8

Irradiance (GHI) forecasting since it is deemed one of the main drivers for solar power9

forecasting (Lorenz et al., 2021).10

Today, users are faced with a myriad of forecasting methods. They can vary in the11

nature of the approach, the kind of inputs fed into the models, the outputs they produce12

or even in the forecasting horizon under consideration. Review publications aim to identify13

and structure all these elements, often comparing the performance values reported across14

the literature (Antonanzas et al., 2016; Sobri et al., 2018; Blaga et al., 2019; Yang et al.,15

2022). However, benchmark studies aim to do so using a methodology that ensures a fair16

comparison, i.e. the same locations and training and test periods. This has been done17

for many different aspects of solar forecasting: the post-processing of numerical weather18

prediction models (NWP) (Verbois et al., 2022), baseline approaches (Alonso-Suárez et al.,19

2022), autoregressive statistical learning approaches (Pedro and Coimbra, 2012; Lauret et al.,20

2015), cloud motion vector techniques (Aicardi et al., 2022), deep learning approaches using21

sky images as inputs (Paletta et al., 2021), among others. In other words, these benchmark22

studies ensure a comprehensive understanding and comparable indicators of the benefits23
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associated with a particular approach. For instance, in the frame of IEA SHC Task 4624

(IEA-SHC-T46, 2024), Lorenz et al. (2009) designed a standardized procedure to evaluate25

the accuracy of day-ahead deterministic irradiance forecasts.26

However, all these previous studies focus on deterministic forecasting and dismiss the27

inherent uncertainty of a forecast. Indeed, when it comes to decision-making for grid op-28

erators, utilities, aggregators, balancing responsible parties and others, having not only a29

point forecast but also an associated uncertainty or prediction interval becomes immensely30

valuable. In other words, reliable probabilistic predictions can significantly enhance the31

integration of variable energy sources within the energy network, leading to improved ef-32

ficiency (Morales et al., 2014). Unlike the mature field of wind power forecasting, where33

probabilistic forecasting is well-established (Morales et al., 2014; Iversen et al., 2015; Jung34

and Broadwater, 2014; Pinson et al., 2007), probabilistic solar forecasting is still relatively35

nascent (Hong et al., 2016; van der Meer et al., 2018; Hong et al., 2020). Consequently,36

there are considerably less benchmark studies focusing on solar probabilistic forecasts.37

A literature review restricted to intra-hour/intra-day solar probabilistic forecasts reveals38

that a few studies have started to address this gap. Among others, one can cite the fol-39

lowing works. Grantham et al. (2016) used a non parametric bootstrapping method for40

generating prediction intervals of GHI at a forecast horizon of 1h. The bootstrap tech-41

nique requires a point forecast which is, in their work, delivered by a linear auto-regressive42

(AR) model. With only past ground data, David et al. (2016) used a combination of point43

forecast ARMA model and a parametric GARCH model to generate intra-hour (up to 1h44

ahead with a time step of 10 mins) and intra-day (up to 6h ahead with a time step of 1h)45

GHI probabilistic forecasts. Lauret et al. (2017) evaluated the quality of three probabilis-46

tic models for intra-day solar forecasting. A linear quantile regression technique is used to47

build three models for generating 1 to 6h ahead probabilistic forecasts. Inputs of the models48

are either only ground data or ground data with day-ahead forecasts provided by the Eu-49

ropean Center for Medium-Range Weather Forecast (ECMWF). The results demonstrated50

that the Numerical Weather Prediction (NWP) exogenous inputs improve the quality of the51

intra-day probabilistic forecasts. Using only past ground GHI measurements, David et al.52

(2018) set up a combination of 3 points forecasting methods and 7 probabilistic methods53

to issue intra-day GHI forecasts. None of the model combinations clearly outperformed the54

others. However, regardless of the point forecasting method used, linear models in quantile55

regression, weighted quantile regression and gradient boosting decision trees appear to pro-56

duce probabilistic forecasts with higher quality than the other proposed methods. In their57

work, Alonso-Suárez et al. (2020) developed three models aimed at generating intra-day58

probabilistic GHI forecasts, spanning lead times from 10 minutes to 3 hours with a gran-59

ularity of 10 minutes. The initial model solely relies on historical ground measurements.60

The second model enhances the first one by integrating a variability metric derived from61

these historical ground measurements. The third model incorporates satellite albedo as an62

additional input. A linear quantile regression is employed to create directly (i.e. without63

using a point forecast) a range of quantiles summarizing the predictive distributions of the64

global solar irradiance. The findings demonstrate that the inclusion of satellite data further65

enhances the quality of the probabilistic forecasts. Mazorra-Aguiar et al. (2021) assessed66
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the performance of two approaches for solar probabilistic forecasting to generate intra-day67

solar forecasts covering time horizons from 1 hour to 6 hours. The first approach involves a68

two-step process. Initially, point forecasts are generated for each forecast horizon, followed69

by the utilization of quantile regression techniques to estimate the prediction intervals. The70

second methodology directly predicts the quantiles of the predictive distribution using past71

ground data as input. Yang et al. (2020) benchmarked 5 forecasting intrahour/intraday72

solar probabilistic methods (including notably an Analog Ensemble method and a linear73

quantile regression technique) on a standardized dataset set up by (Pedro et al., 2019). All74

the proposed methods generate directly the quantile forecasts without resorting to a point75

deterministic forecast. The findings clearly highlight the significance of exogenous inputs76

in probabilistic solar forecasting, as all methods demonstrate enhanced results upon the77

integration of exogenous features computed from sky, satellite images and NWP outputs78

provided by the NAM the North American Mesoscale (NAM) forecast system.79

Finally, it must be noted that specific methods based on Cloud-Motion Vector (CMV)80

approach or combination of sky and satellite images have been recently proposed in the81

literature. For instance, Carrière et al. (2021) designed a CMV-based probabilistic method82

which is an extension of the deterministic CMV approach by adding Gaussian noise to83

the norm and direction of the cloud motion vector estimates. Paletta et al. (2023) used84

an hybrid deep learning method combining sky images, satellite observations and/or past85

ground irradiance to generate intra-hour solar forecasts.86

Following the previous literature review, the following comments can be made. To evalu-87

ate the quantile forecasts two methodologies can be distinguished. The first one leverages on88

a point deterministic forecast to produce with a specific statistical technique the prediction89

intervals. The second one generates directly (i.e. without resorting to a point forecast) the90

quantile forecasts. Regarding the first methodology, no work tries to evaluate the impact of91

a high quality point forecast on the generation of probabilistic forecasts.92

Moreover, to the best of our knowledge, no benchmarking exercise has been conducted93

to compare classical probabilistic techniques like quantile regression or Analog Ensemble94

with a CMV-based probabilistic approach on multiple sites experiencing different climate95

conditions.96

Therefore, as part of IEA PVPS T16 (IEA-PVPS-T16, 2024), experts engaged in Activity97

3.3 on solar probabilistic forecasts found it essential to complement these previous studies98

regarding intra-hour and intra-day solar probabilistic forecasts. In other words, it appears99

important to experts of the IEA PVPS T16 to propose to the solar forecasters community100

a comprehensive benchmarking exercise related to intra-day and intra-hour solar irradiance101

forecasts.102

To this end, five participants set-up a benchmarking exercise based on a shared ground103

measurement, satellite and NWP data. Eight European sites with diverse climatic condi-104

tions were chosen for this purpose. The proposed benchmarking procedure is implemented105

to compare 15-min irradiance probabilistic forecasts up to 6 hours issued by each participant106

with their own forecasting methods. In particular, to fill the gaps highlighted by the litera-107

ture review, it appeared first important to the IEA PVPS experts to jointly evaluate a CMV108

probabilistic system with traditional quantile forecasting methods. Second, an assessment109
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of the impact of a high quality point forecast on the quality of the generated probabilistic110

predictions is also conducted in this work.111

To evaluate the quality of the probabilistic predictions, different diagnostic tools and112

scoring rules can be employed (Lauret et al., 2019). For user convenience, the verification113

scheme should be kept simple. For that, we propose using the reliability diagram as a114

visual diagnostic tool and the Continuous Ranked Probability Score (CRPS), as the numer-115

ical score. It is commonly adopted by the community in the verification process of solar116

irradiance probabilistic forecasts.117

Further, in this work, unlike most of the previous studies, and in order to better highlight118

the skill of a forecasting method, we propose the numerical decomposition of the CRPS into119

the reliability and resolution components as in (Lauret et al., 2019).120

The rest of the paper is organized as follows. Firstly, this paper introduces the bench-121

marking exercise. Section 3 details the data used in the exercise while Section 4 gives an122

overview of the diverse forecasting methodologies. The verification framework is presented123

in Section 5. Section 6 gives the main results of the benchmark and Section 7 discusses124

the impact of combining a blended point forecast with statistical techniques to generate125

probabilistic solar forecasts. Finally, Section 8 concludes this paper.126

2. The benchmarking exercise127

In the frame of the IEA PVPS Task 16 (IEA-PVPS-T16, 2024), five participants agreed128

to set up a benchmarking exercise related to intra-day and intra-hour solar irradiance prob-129

abilistic forecasting. Table 1 lists the participants of this benchmark, the code that will be130

used to identify them throughout the following sections and plots, as well as the forecasting131

methods used. For this exercise, each participant submitted their forecasts under the form132

of quantile forecasts (i.e. the quantiles of the predictive distribution).133

Together, the participants designed the framework that would guide this benchmark,134

namely the type of input data that could be fed into the forecasting models, the forecast135

horizons to be considered, and the selection of the probability levels of the quantile forecasts.136

Table 2 gives details regarding these decisions. Thus, each participant was responsible for137

generating 15-min irradiance probabilistic forecasts up to 2 hours ahead (for intra-hour)138

and up to 6h (for intra-day) for 8 selected European sites (described in Section 3). The139

verification of the forecasts was conducted blindly by one of the authors of this paper. The140

MAE, equivalent to the CRPS of a deterministic forecast, of the median of the predictive141

distribution was included in order to evaluate the improvement of CRPS brought by the142

probabilistic approaches over their deterministic counterparts.143
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Participant Code/Method Forecasting methodology Input data
Mines Paris (OIE) OIE CMV-based probabilistic ap-

proach
Satellite data

University of La Réu-
nion (PIMENT)

PIMENT Parametric method ARMA-
GARCH

Ground data

Fraunhofer (ISE) ISE Blended point forecast +Ana-
log Ensemble

Ground + satellite +
NWP data

Utrecht University
(UU)

UU Non-linear Quantile Regres-
sion Forest

Ground data

Laboratorio de Energía
Solar (Udelar)

LES Linear quantile regression Ground + satellite data

Table 1: List of participants. The code associated to each participant also identifies the forecasting method-
ology used by the participant

Type of Input Data - Ground GHI measurements
- Satellite estimates
- NWP forecasts
- Solar geometry variables (e.g. Solar Zenith Angle (SZA), etc)

Forecast horizon - Intra-hour: 8 horizons (15 to 120 min, in 15-min steps)
- Intra-day: 16 horizons (135 to 360 min, in 15-min steps)

Forecasts specification 15 GHI quantile forecasts with probability levels of
[0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 1]

Verification metrics - Reliability diagram
- CRPS
- CRPS skill score with the CSD-CLIM model as baseline - see
(Le Gal La Salle et al., 2021).
- MAE of the median of the predictive distribution

Table 2: Parameters of the benchmarking exercise. Details regarding the verification metrics are provided
in section 5

3. Data for the benchmarking exercise144

3.1. Ground measurements145

It is crucial to use identical data for evaluation when comparing various prediction meth-146

ods. The selected dataset comprises 15-min measured GHI values from eight locations of147

Europe. We restricted the evaluation to European sites since the methods of two of the148

participants used satellite data only covering most of the European domain. The evalua-149

tion period spans from January 2017 to December 2018. The year 2017 was chosen for the150

training set of the different methods described below, while 2018 was used for testing these151

methods.152
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The original reference database comprises high temporal resolution GHI data (1 minute)153

that were collected for a benchmarking exercise of modelled solar radiation data (Forstinger154

et al., 2021). This benchmark exclusively incorporates quality-assured data, meticulously155

checked using an extensive range of best practices and newly established quality-control156

procedures (Forstinger et al., 2021). These procedures encompass automated and manual157

data quality tests along with descriptive quality flagging, conducted by a team of experts of158

the IEA PVPS T16 subtask 1 (IEA-PVPS-T16, 2024).159

The 15-min dataset results from a downsampling of these original 1-min. More precisely,160

the 1-min raw GHI were averaged at 15 minutes resolution. Also, in case of missing raw data,161

a linear interpolation is done if the gap is below 1h otherwise the whole day is discarded.162

Finally, data for which solar elevation ≤ 10° have been filtered out and are consequently not163

taken into account in the evaluation process.164

Table 3 gives all the details related to each site. Note that, except for the TAB site165

provided by CIEMAT/DLR (CIEMAT, 2024), all sites are part of the BSRN (BSRN, 2024).166

Site Code Latitude (°N) Longitude (°E) Altitude (m) Köppen C. Source Mean GHI(W/m2)
Cabauw CAB 51.9711 4.9267 0 Cfb BSRN 315.0

Carpentras CAR 44.083 5.059 100 Csa BSRN 411.1
Cener CEN 42.816 -1.601 471 Cfb BSRN 381.6
Milan MIL 45.4761 9.2545 150 Cfa RSE 394.1

Palaiseau PAL 48.713 2.208 156 Cfb BSRN 347.7
Payerne PAY 46.815 6.944 491 Cfb BSRN 368.9

Plataforma Solar TAB 37.0909 -2.3581 500 Bsk CIEMAT/DLR 499.5
Toravere TOR 58.254 26.462 70 Dfb BSRN 318.1

Table 3: Locations and key figures of ground measurements used for the benchmark. Column "Köppen C."
lists the Köppen-Geiger climate classification of each site while column "Mean GHI" gives the average GHI
of the test dataset.

3.2. Satellite data167

In this study, two data sets of GHI estimates based on satellite data are considered. Both168

are based on images obtained by the SEVIRI instrument onboard the Meteosat Second Gen-169

eration (MSG) satellite using the MSG 15-minute visible channel with a spatial resolution170

of approximately 1× 2 km at Europe.171

The first data set used for the OIE and LES forecasts is derived from the satellite images172

using the Heliosat-4 model (Qu et al., 2017a). The GHI estimates in the second data set173

used for the ISE forecasts are based on a modified version of the Heliosat method (Hammer174

et al., 2003).175

Generally, for forecasting purposes, a sequence of satellite images is used to infer cloud176

motion vectors (CMV), i.e. vectors that describe cloud advection, which can be extrapolated177

into the future to make a prediction. For a better understanding of the assumptions and178

limitations of the use of CMV, the reader is directed to (Lorenz et al., 2021).179
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3.3. NWP forecasts180

NWP forecasts are used as input to generate blended point forecasts by ISE. Thereto,181

ISE includes the atmospheric model high resolution 10-day forecast (HRES) product of the182

ECMWF IFS forecast with a spatial resolution of 0.125° and a time resolution of 1 h. The183

forecast of shortwave solar radiation downwards (ssrd) is used at base-times 0:00 UTC and184

12:00 UTC. It is spatially smoothed over 9x9 grid points, and upsampled from the original185

1 h time resolution to 15 min via clear sky index (see Equation 1) interpolation.186

4. Description of the probabilistic methods187

Let us recall that all probabilistic methods depicted in this work generate quantile fore-188

casts with the probability levels given in Table 2. However, each participant utilizes their189

own method to produce this set of quantiles (listed and briefly described above in Table 1).190

Three classes of approaches are employed in this benchmark. The first class extends191

to the probabilistic domain a framework traditionally used to produce deterministic CMV-192

based forecasts, mainly by adding Gaussian noise to its inputs (similarly to a Monte Carlo193

approach). That is the case of Mines Paris OIE. The second class corresponds to a two-step194

approach where a deterministic forecast is generated and then used as input by a statistical195

technique to generate the quantile forecasts. This is the case of participants PIMENT and196

ISE. Conversely, the third class produces directly (in one step) the quantile forecasts from197

a set of input variables. This is the case of participants UU and LES.198

Finally, in the field of solar forecasting, it is a standard procedure to detrend the Global199

Horizontal Irradiance (GHI) time series due to its non-stationary nature, characterized by200

daily cycles and annual seasonalities (Lauret et al., 2022). This detrending process involves201

utilizing the output of a clear sky model. Specifically, a new deseasonalized series, known as202

the clear sky index kc time series, is derived by employing the following data transformation203

kc =
I

Ic
, (1)

where I is the measured global horizontal irradiance and Ic is the output of a clear sky204

model. All the proposed forecasting models described below make use of the clear sky index205

kc time series. However, it should be noted that the choice of the clear sky model may vary206

depending on the participant.207

4.1. Description of Mines Paris OIE model208

This approach, proposed originally in Carrière et al. (2021), combines physical and sta-209

tistical elements and leverages a standard satellite-based solar forecasting framework which210

is traditionally used for deterministic forecasting. Figure 1 gives an overview of the principle211

of the method.212

First, a 25x25 grid with 0.04° resolution centered in the location of interest is defined.213

For each grid cell, satellite-derived time series for GHI and its clear-sky expectation (Ic) are214

obtained from the Copernicus Atmospheric Monitoring Services (CAMS) Radiation product215

(Qu et al., 2017b) using the pvlib Python interface (Jensen et al., 2023). Note that while216
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the native resolution of this product depends on the distance to nadir, the CAMS Radiation217

product adjusts to any requested coordinates by means of interpolation. Based on this data,218

the corresponding clear-sky index kc grid was calculated according Equation 1 and its spatial219

resolution was further increased by a factor of 3 through a 2D linear interpolation. Then,220

the CMV of each downscaled kc cell is inferred using an Optical Flow technique following221

the work of Chow et al. (2015) and using an efficient method proposed by (Liu, 2009).222

Deterministic CMV-based forecasts are calculated, for example, by extrapolating the kc223

grid in space (according to the CMVs and the forecast horizon) and selecting the advected224

kc value which is closest to the location of interest. In this approach, an Eulerian spa-225

tial extrapolation is considered, where the clouds are assumed to move in a straight-line226

trajectory.227

Here, the probabilistic aspect is enabled by three elements: i) a Gaussian noise distri-228

bution relative to the CMV estimates, namely to the norm and direction of a vector; ii)229

a Gaussian noise distribution relative to the kc estimates; and iii) a monitoring perimeter.230

The first two aim to describe the uncertainty associated with the estimation of the satellite-231

derived variables, whereas the third defines a distance threshold below which an extrapolated232

grid cell is considered a plausible forecast candidate. This allows the generation of a set of233

plausible advection scenarios. The third corresponds to a distance threshold below which an234

extrapolated kc pixel is considered a plausible forecast candidate. Thus, the combination of235

the viable candidates from all the generated scenarios constitutes an ensemble of kc forecasts236

from which an empirical CDF is built.237

Finally, the kc CDF is converted back to GHI by multiplying it with the Ic obtained from238

CAMS Radiation (see Equation 1), which considers the McClear clear-sky model, which239

accounts for water vapor and aerosol effects (Lefèvre et al., 2013). To mitigate potential240

calibration issues, the forecasts are post-processed by first considering the baseline model241

CSD-CLIM (Le Gal La Salle et al., 2021) for defining the bounding quantiles (Q0 and Q100)242

and then implementing a quantile mapping approach for calibration, adjusting the effective243

probability rate of each quantile to its theoretical rate according to the training data.244

More details on this implementation can be found in Carrière et al. (2021), including the245

parameters assumed for the considered sources of Gaussian noise. Concerning the model246

implementation, a few remarks:247

• It is only tested for the locations covered by the CAMS Radiation service (i.e., covered248

by the Meteosat Second Generation geostationary satellite);249

• It is only tested for the horizon range between 15 minutes and 2 hours;250

• In two situations, the baseline approach proposed by (Le Gal La Salle et al., 2021)251

is considered instead of the CMV-based one: i) when for a given day, forecast time,252

and horizon, there is yet no available satellite image; ii) when this approach leads to253

less than 50 kc candidates, which possibly compromises the representativeness of the254

produced ensemble.255
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(a) (b)

Figure 1: Mechanisms leveraging the probabilistic CMV approach: (a) the generation of advection scenarios
by inputting noise to the base CMV; (b) the consideration of all advected grid cells that fall inside a
monitoring perimeter.

4.2. Description of PIMENT model256

The PIMENT model is based on a parametric approach commonly used in the financial257

domain. It combines a AutoRegressive Moving Average model (ARMA) and Generalized258

AutoRegressive Conditional Heteroskedasticity (GARCH), which successively generate a259

point forecast and then its associated uncertainty. This combination in the field of solar260

energy has been first introduced by David et al. (2016). The model is applied to the clear261

sky index kc time series with the McClear model (Lefèvre et al., 2013) selected as the clear-262

sky model .263

The AutoRegressive Moving Average model (ARMA) stands as a prevalent and widely-264

applied method in time series prediction. Its extensive utilization in forecasting renewable265

energy has underscored its competitive edge, owed largely to its parsimonious nature. No-266

tably, its application spectrum encompasses the forecasting of solar irradiance among other267

domains (Bacher et al., 2009; David et al., 2018). A general formulation of an ARMA(p,q)268

model with p autoregressive (AR) terms and q moving average (MA) terms is given by269

(Tsay, 2010). Its application to the h-ahead forecast of a variable y is given by the following270

equation271

ŷt+h = α0 +

p∑
i=1

αi × yt−i+1 +

q∑
j=1

βj × ϵt−j+1, (2)

with h = 1, 2, · · · the forecast horizon and α0, α1, · · · , αp, β1, · · · , βq the coefficients to be272

estimated. The error term ϵ is the difference between the previous forecasts and observations273

as defined in the following equation:274

ϵt = ŷt − yt. (3)

The ARCH (AutoRegressive Conditional Heteroskedasticity) models, introduced by En-275

gle (Engle, 1982), is used to model the variance of time series in the financial domain. These276

models are particularly efficient to predict changes in variance over the time, for instance277
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the error of point forecast generated with an ARMA model (Bollerslev, 1986). PIMENT278

applied the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model279

proposed by Bollerslev (1986), which gives a more parsimonious formulation than the sim-280

ple ARCH model. In GARCH models, the conditional variance is a linear function of lagged281

squared error terms and also lagged conditional variance terms (Taylor, 2004). The general282

formulation of a GARCH(r,s) model, with r error terms, s conditional variance terms and283

an horizon of forecast h, is given by:284

ŷt+h = σ̂t+h × εt, (4)

with ε an uniformly distributed random variable with a null mean and a unitary variance,285

and σ̂t+h the predicted standard deviation given by286

σ̂2
t+h = γ0 +

r∑
i=1

γi × ϵt−i+1 +
s∑

j=1

δj × σ2
t−j+1. (5)

As for the ARMA models, γ0, γ1, ..., γr, δ1, ..., δs are the coefficients to be estimated.287

There are numerous methods to estimate these coefficients. The two most widely used are288

the least squares (LS) and the Maximum Likelihood Estimation (MLE) methods. Here, we289

propose to implement the Recursive Least Squares (RLS) method, which is a variation of290

the LS method. This method reduces the computational cost with the coefficient of the291

model being updated in real-time as new data become available. The RLS method is very292

efficient in an operational context where forecast have to be timely delivered.293

To determine the lag parameters p, q of the ARMA model, PIMENT ran the model on294

the training year for different combinations of the lag parameters with values varying from295

1 to 10. The best combination is the one that minimizes the RMSE of the point forecast.296

For the probabilistic part, PIMENT used a GARCH(1,1), which is appropriate for the error297

times series of the point forecast.298

4.3. Description of Fraunhofer ISE model299

The approach by Fraunhofer ISE consists of two steps. In a first step, blended point300

forecasts are derived from different input data (Section 4.3.1). In a second step, quan-301

tile forecasts are generated from these blended point forecasts using the Analog Ensemble302

(AnEn) method (Section 4.3.2).303

4.3.1. Blended forecasts by Fraunhofer ISE304

Deriving blended forecasts from several distinct input forecasts using statistical or ma-305

chine learning methods is a common approach in deterministic forecasting (see e.g. Lorenz306

et al., 2021).307

Here, GHI forecasts are generated by blending three different types of forecasts308

• a persistence forecast,309

• a satellite-based forecast,310

• and the deterministic ECMWF IFS forecast (see Section 3.3).311
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The persistence forecast is created by deriving a clear sky index from the latest mea-312

surement, which is then extrapolated into the future. Fraunhofer ISE employs the clear-sky313

model from Dumortier (1995) and the turbidity model from Bourges (1992) to compute314

clear sky irradiance and the clear sky index, not only for persistence, but for all modeling315

steps described in this section. The satellite-based forecasts are based on CMVs derived316

from MSG satellite images (see section 3.2) following Kühnert et al. (2013). The CMVs317

are computed using a block matching algorithm. Future images are obtained by repetitive318

application of the cloud motion vectors. Finally, smoothing filters depending on forecast319

lead times are applied to the future images.320

The three different forecast types are blended using a set of linear regression models,321

fitted for each forecast horizon and time of the day. This allows to adjust the regression322

weights to the varying performance of the different input forecasts in dependence of the323

forecast horizon (see Figure 2). The resulting blended forecast can be written as324

Ih,τblend = ch,τpers · Ih,τpers + ch,τcmv · Ih,τcmv + ch,τnwp · Ih,τnwp, (6)

where IX are the GHI of the blended, persistence, CMV or NWP forecast, cX are the325

corresponding regression weights, and h and τ denote the index of the forecast horizon and326

time of the day respectively. When determining the regression weights ch,τX for a forecast327

horizon h, data from h ± 2 horizons were included in the fit, to enable the generation of328

a smooth blended output forecast from the different linear models. The regression weights329

are trained for the year 2017 and applied to generate the forecasts for 2018. With multiple330

sites of observation and forecast data, either one set of the blending parameters for all sites331

or separate sets for each site can be derived. It was decided for the single site training, to332

obtain close-to-bias-free blended forecasts for each site.333
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Figure 2: Relative MAE vs. forecast horizon, computed for all eight sites together for the test year of 2018.
The MAE is normalized with the average GHI, which differs between 351 W/m2 and 397 W/m2 depending
on filtering. Filtering such that all component forecasts for blending are available; the deviations of the
ensemble median here compared to the benchmark (e.g. Figure 4) result from differences in the filtering.

When generating the blended forecasts, missing data is handled in the following way:334

If one of the component forecasts is missing, a simple mean of the remaining component335

forecasts is calculated instead of using the regression weights. For horizons or times of the336

day for which no regression weights could be determined, NWP data is returned. It should337

be noted here that persistence as well as satellite based forecasts can only be calculated after338

sunrise and before sunset, which impacts availability of these forecasts in the early morning339

hours depending also on the forecast horizon. For example, if the earliest satellite based340

forecast could be calculated at 7:00 am, forecasts for horizons of 4 hours ahead are available341

only from 11:00 am onwards.342

The performance of the different forecasts, quantified in terms of MAE, is shown as a343

function of forecast horizon in Figure 2. Here the different availabilities of the forecasts344

discussed above have to be considered. For reasons of comparability, calculation of MAE345

includes only data points for which all displayed forecasts are available. The Figure shows346

that the persistence forecasts are best performing for short horizons up to 45 minutes,347

satellite-based forecasts are best performing for intermediate horizons up to about 3 hours,348

and the NWP performs best for even larger horizons. The blended forecasts always exhibit349

a lower MAE than any of the individual input forecasts. They form the basis to derive350
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probabilistic forecasts in a next step.351

4.3.2. Analog Ensemble352

The Analog Ensemble (AnEn) is a non-parametric ensemble prediction method (Delle Monache353

et al., 2013; Junk et al., 2015). The method is based on the evaluation of historic observa-354

tions and deterministic forecasts. Past forecasts are compared to the current forecast and355

the observations corresponding to the most similar forecast situations, called analogs, then356

form an ensemble of possible future values. The quantities, which are used to measure sim-357

ilarity, are called predictors. Alessandrini et al. (2015) constructed an AnEn for PV power358

prediction and used the GHI, solar elevation and azimuth, cloud cover, and ambient tem-359

perature (T2M) from the deterministic ECMWF IFS forecast as predictors. Here, an AnEn360

to predict the GHI instead of the PV power is created. Furthermore, just one predictor361

quantity is used for the AnEn, namely the forecasted clear sky index.362

To set up the Analog Ensemble, in a first step, the clear sky index values of the blended363

forecasts and the measurements are computed. Situations with measurement-based clear sky364

index values above 1.2 are excluded. To identify the analogs for a current forecast value with365

a forecast horizon h0, similarity to past forecasts is evaluated using the Euclidean distance366

of the forecast values of five horizons {h0 − 30min, h0 − 15min, h0, h0 + 15min, h0 + 30min},367

centered around h0. This window helps to reduce fluctuations in the distance measure and368

to improve meteorological similarity between situations. The measurement-based clear sky369

indices corresponding to the 40 most similar situations are taken to form the AnEn.370

Similar to a k-nearest-neighbor regression, the AnEn has no explicit training phase,371

instead the analogs are selected from a search space at the time a prediction is made. The372

analog search is performed separately for each forecast horizon and each time of the day,373

reflecting different uncertainties in dependence of the forecast horizon (see Fig. 2) and the374

time of the day. The search space for the analogs is composed using a rolling window of the375

last 180 days and integrating all eight European sites together, resulting in 1440 historic data376

points from which the 40 analogs are selected. Integrating the different sites increases the377

search space and thus the reliability of the ensemble. It is made possible by using the clear378

sky index as a predictor instead of GHI and close-to-bias-free forecasts for the different sites.379

The ensemble of clear sky indices is, then, transformed back to GHI values by multiplication380

with clear sky irradiance. The quantiles are finally obtained by a linear interpolation of the381

ensemble members, see method 7 of (Hyndman and Fan, 1996).382

4.4. Description of Utrecht University (UU) model383

Quantile regression forest (QRF) is a nonlinear ensemble model that is based on the384

random forest regression (RF) model (Koenker, 2005; Meinshausen and Ridgeway, 2006).385

Similar to a RF model, QRF is made up of a predefined set of decision trees that exist of386

a number of layers (tn) and decision nodes (2tn). The trees are constructed independently387

from each other by considering bootstrap samples from the training dataset in the training388

stage. The nodes are constructed by selecting a random subset of the predictor variables389

and optimizing the decision node on a preset loss function, e.g the mean squared error. In390

contrast to a RF model, the QRF model predicts a conditional distribution function (or391
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weighted distribution of observations). Hence, given a set of predictor variables, each tree in392

the QRF model predicts the conditional quantiles of the target variable, i.e., GHI. Finally, a393

post-processing step is added in which each quantile value is set to be equal or higher than394

zero and equal or lower than the clear sky irradiance estimate (Ic).395

The UU forecast model follows the approach described in Visser et al. (2023) to find the396

optimal hyperparameter settings. Hence, the training set is split into several training and397

validation subsets, using k-fold cross-validation with k = 8 (Raschka and Mirjalili, 2019).398

Once the optimal hyperparameter settings are found, the QRF model is trained considering399

the entire training set, i.e., one year (2017) and then applied to predict the GHI for the test400

year (2018).401

The QRF model considered in this study operates endogenously. This implies that the402

model only relies on historical observations of the target variable, i.e., the GHI (I), as well as403

variables that are available at any time, i.e., the clear sky irradiance Ic. Using I and Ic, we404

construct two additional variables: the clear-sky index kc (see Equation 1) and the expected405

GHI using a clear sky-based smart persistence model, similar as discussed in Section 4.3.406

From these four main variables, a large set of predictor variables can be generated by407

simply considering a multitude of lagged values. In this study, UU optimizes the number408

of historical values by means of an iterative process. Hence, starting with a base model,409

at each iteration one lagged value is added, where after an evaluation if the addition leads410

to a significant performance improvement is made. The final set of variables considers 18411

predictor variables, including: the previous eleven GHI measurements (I(t), (...), I(t− 10)),412

the clear-sky irradiance (Ic(t + k)), the clear-sky index (kc(t)) and the persistence forecast413

considering the three most recent irradiance measurements (Ipers(t + k, t), Ipers(t + k, t −414

1), Ipers(t+ k, t− 2)).415

4.5. Description of Udelar LES model416

The LES forecast is an adaptation of the methodology proposed by Alonso-Suárez et al.417

(2020). This approach utilizes lagged ground measurements and geostationary satellite data418

as inputs for a Linear Quantile Regression (LQR) model, as described by Koenker and419

Bassett (1978). The LQR model is used to predict quantiles of the clear-sky index (kc). These420

quantiles are then converted to quantiles of the Global Horizontal Irradiance (GHI) using the421

McClear clear-sky model (see Equation 1). While the mathematical formulation is relatively422

simple, the crucial aspect lies in the predictors’ selection. The forecasting model incorporates423

the present time and the six preceding kc values, along with four other predictors derived424

from either the past kc values or a satellite space cell that surrounds the specific location.425

The first additional predictor is the local short-term variability (σc), which is calculated as426

the standard deviation of the last six changes in kc. For more in-depth information on how427

σc is calculated, please refer to Alonso-Suárez et al. (2020). The remaining three predictors428

are derived from the Heliosat-4 satellite estimates in a 25× 25 px space cell provided by the429

Copernicus Atmosphere Monitoring Service (CAMS). By employing the McClear model, the430

clear-sky index is calculated for each pixel in the satellite cell. From this index, the average,431

standard deviation, and cloud coverage are computed and utilized as input variables in432

the LQR method. The cloud coverage is estimated as the fraction of pixels in the cell433
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with kc < 0.85. In summary, the inputs for the LQR model are six lagged kc values, the434

local short-term variability, and four variables related to the current time. These current435

time variables consist of the measured kc, the space average and standard deviation of the436

satellite-derived kc, and the satellite-estimated cloud coverage within the cell. Different LQR437

parameters are trained for each site, forecast horizon, and quantile.438

5. Proposed evaluation framework439

Visual diagnostic tools and quantitative scores are used to assess the quality of the440

probabilistic forecasts (i.e. the correspondence between ground truth and the forecasts).441

Diagnostic tools are used to visually assess the quality of probabilistic forecasts, while nu-442

merical scores are used to quantify the skills of a forecasting system and to rank competing443

prediction methods.444

In this study, following the recommendation of Lauret et al. (2019), we adopt the CRPS445

as the scoring rule to assess the overall performance of the forecasting method. Moreover,446

to gain a deeper understanding of the forecast skill of each forecasting method, we further447

decompose the CRPS into two components: reliability and resolution. In case of predictive448

distributions summarized by discrete quantile forecasts, Lauret et al. (2019) proposed specific449

formulae to compute the CRPS and its related decomposition. The interested reader is450

referred to (Lauret et al., 2019) for more details regarding the computation of this CRPS451

decomposition. Another useful assessment is whether a prediction system outperforms a452

trivial baseline model. To this end, we compute the CRPS skill score with the climatological453

model CSD-CLIM (Le Gal La Salle et al., 2021) as the reference model.454

Finally, in this work, we use reliability diagrams to visually evaluate reliability of the455

different forecasts.456

5.1. Visual assessment with reliability diagrams457

The reliability diagram serves as a graphical tool for assessing the reliability of probabilis-458

tic forecasts. In this paper, we follow the methodology established by (Pinson et al., 2010),459

which is tailored for predictive distributions summarized by quantile forecasts. Specifically,460

quantile forecasts are considered reliable when their stated probabilities match the observed461

proportions. In essence, over a sufficiently large evaluation dataset, the disparity between462

observed and nominal probabilities should be minimized (Pinson et al., 2010).463

One of the advantages of this representation is that it allows deviations from perfect464

reliability, represented by the diagonal line, to be readily visualized (Pinson et al., 2010).465

However, it’s important to acknowledge that due to the finite sample of observation/forecast466

pairs and potential serial correlation in the sequence of forecasts and observations, observed467

proportions may not align precisely along the diagonal, even if the forecasts are perfectly468

reliable (Pinson et al., 2010). In other words, reliability diagrams can sometimes be mis-469

leading because even for perfectly reliable forecasts, deviations from the ideal diagonal case470

can be observed.471

To address the limitations arising from the finite number of observation/forecast pairs,472

(Bröcker and Smith, 2007) introduced reliability diagrams with consistency bars. Addition-473

ally, Pinson et al. (2010) has proposed consistency bars that consider the combined effects of474
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serial correlation and limited data. In this work, consistency bars are calculated according475

to (Pinson et al., 2010). When interpreting reliability diagrams with consistency bars, it476

becomes clear that one cannot reject the hypothesis of the quantile forecasts being perfectly477

reliable if the observed proportions fall within the consistency bars. In practice, incorporat-478

ing consistency bars into reliability diagrams can provide additional support for the user’s,479

possibly subjective, assessment of the reliability of the different models.480

5.2. Continuous Rank Probability Score (CRPS) and its decomposition481

The Continuous Ranked Probability Score (CRPS) is a numerical score that quantifies482

the difference between the predicted and observed cumulative distribution functions (CDF)483

(Hersbach, 2000). It is formulated as follows:484

CRPS =
1

N

N∑
i=1

∫ +∞

−∞

[
F̂ i
fcst(x)− F i

xobs
(x)

]2
dx, (7)

where F̂fcst(x) is the predictive CDF of the variable of interest x (e.g. GHI) and Fxobs
(x) is a485

cumulative-probability step function that jumps from 0 to 1 at the point where the forecast486

variable x equals the observation x0 (i.e. Fxobs
(x) = 1{x≥xobs}). The squared difference487

between the two CDFs is averaged over the N observation/forecast pairs.488

The CRPS score is designed to reward forecasts that concentrate their probabilities489

around the step function located at the observed value, promoting accuracy and precision490

in forecast predictions (Wilks, 2009). Put simply, the CRPS serves as a penalty for both491

insufficient resolution in predictive distributions and biased forecasts. It is worth noting that492

the CRPS is oriented negatively, meaning that smaller values indicate better performance,493

and it has the same unit as the forecast variable.494

As previously mentioned and in accordance with its nature as a proper scoring rule495

(Gneiting and Raftery, 2007), the CRPS can be decomposed into two fundamental aspects496

of probabilistic forecasts: reliability and resolution. This decomposition of the CRPS yields497

the following equation:498

CRPS = REL+UNC-RES. (8)

The reliability REL component of the CRPS provides an assessment of forecast biases,499

while the resolution RES component quantifies the improvement achieved by issuing case-500

dependent probability forecasts. The uncertainty component UNC, on the other hand, is501

inherent to the observations and cannot be influenced by the forecast system; it depends502

solely on the variability of the observed data (Wilks, 2009).503

Given that the CRPS is negatively oriented, the objective of a forecast system is to504

minimize the reliability component as much as possible, while also maximising the resolution505

component. By employing this decomposition of the CRPS, a detailed evaluation of the506

forecast performance of different forecasting methods can be obtained.507

Besides, in the case of deterministic forecasts, the CRPS reduces to the Mean Absolute508

Error (MAE). This characteristic enables a direct comparison between the performance509

of a probabilistic model and a deterministic one, or equivalently, it allows for assessing510
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the additional value provided by a probabilistic approach (Ben Bouallègue, 2015). In this511

study, we calculate the Mean Absolute Error (MAE) of the forecast distribution’s median512

to evaluate the extent to which the probabilistic approach enhances (or fails to enhance) the513

overall quality of the forecasts over its deterministic counterpart.514

5.3. The CSD-CLIM model and the associated CRPS skill score515

Probabilistic scores do not allow fair comparisons between different sites or datasets. To516

do so, it is a good practice to consider the relative performance against reference models517

(Gneiting et al., 2023) through skill scores. Over the past years, several benchmark models518

for probabilistic forecasting were introduced in the literature (Doubleday et al., 2020; Gneit-519

ing et al., 2023). For this work, the CSD-CLIM model has been selected. For each site, the520

measurements of the training dataset are gathered according to a set of bins of clear-sky521

irradiance. Then, empirical CDFs are built independently for each bin. In the test period,522

the clear-sky model is used to select the appropriate bin and the associated forecasting CDF.523

Thus, the CSD-CLIM approach is climatological in the sense that it only uses historical data524

and a clear-sky model. More details about theory and implementation are available in (Le525

Gal La Salle et al., 2021). In this work, the McClear clear-sky model (Lefèvre et al., 2013)526

has been chosen with 30 clear-sky irradiance bins.527

A skill score represents the degree of improvement of a forecasting model compared to528

the reference baseline model. The CRPS skill score (CRPSS) reads as529

CRPSS = 1− CRPSmodel

CRPSreference

. (9)

6. Results530

6.1. Reliability diagrams531

Reliability diagrams related to each scenario (intra-hour or intra-day) for each participant532

are given in Figure 3, with each of the plots averaged for all sites. Note that the averaging533

for all sites is performed by aggregating GHI observations and forecasts for each site into two534

distinct time series. This procedure will be also used to calculate the overall CRPS results535

in section 6.2.1. Consistency bars for a 90% confidence level are individually computed for536

each nominal proportion. Note that comments related to Figures 3f, 3g and 3h will be made537

in Section 7.538
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(a) OIE
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(b) PIMENT
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(c) ISE

Nominal proportion
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
b

s
e

rv
e
d

 p
ro

p
o

rt
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) UU
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(e) LES
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(f) BLEND-GARCH
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(g) BLEND-LQR
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(h) BLEND-QRF

Figure 3: Reliability diagrams for all sites averaged over all the forecast horizons related to each participant.
Consistency bars for a 90% confidence level around the ideal line are individually computed for each nominal
proportion. The red curves stand for intra-hour forecasts while the blue one are for intra-day forecasts.

Irrespective of the scenario (intra-hour or intra-day), the visual analysis shows that539

only probabilistic forecasts derived from ISE (Figure 3c) possibly has a high reliability.540

All the other forecasts are possibly non reliable namely those generated by OIE (Figure541

3a), PIMENT (Figure 3b), UU (Figure 3d) and to a lesser extent LES (Figure 3e). More542

specifically, forecasts provided by OIE appear to be clearly non reliable and forecasts issued543

by LES, UU and PIMENT experience high deviations from the ideal line for high nominal544

proportions.545

For the ISE forecasts for which the observed proportions lie within the consistency bars,546

while this does not confirm the perfect reliability of the quantile forecasts, it also does not547

allow us to confidently assert their lack of reliability at a 10% significance level.548
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6.2. CRPS and its decomposition549

6.2.1. Overall results for all sites550

Following Yang et al. (2020), Table 4 and Table 5 report the overall results (i.e. computed551

from the aggregation of forecasts and data of all sites) obtained by each metric in terms of552

“mean ± standard deviation”. More precisely, for intra-hour forecasting, the mean and553

standard deviation are computed from the 8 values of the metric corresponding to the 8554

horizons while for intra-day forecasting, the mean and standard deviation are computed555

from the 16 values related to the 16 horizons (see Table 2). We recall here that intra-hour556

forecasts correspond to 15-120 min-ahead forecasting at 15mins timesteps while the intra-day557

forecasts are for 120-360 min-ahead forecasting at 15mins timesteps. Also, in this section,558

we will comment on the results obtained by the five participants with their original proposed559

method (see Table 1). The methods BLEND-GARCH, BLEND-LQR and BLEND-QRF will560

be presented and discussed later in Section 7.561

Regarding intra-hour forecasts (see Table 4), the best performer is ISE regardless of the562

metric while the worst one is PIMENT. In terms of skill score, the forecast skill of ISE is (in563

average) 46.6% while PIMENT exhibits a skill score of 32.9%. It appears clearly that the564

better performance of ISE originates from its better resolution and reliability. In line with565

the reliability diagrams of Figure 3a, the CMV-based probabilistic method of OIE leads to566

poor results notably in terms of reliability. More generally, the quantitative reliability (REL)567

component of the CRPS confirms the visual diagnosis provided by the reliability diagrams568

in Figure 3. Finally, it should be noted that the linear LQR method proposed by LES, fed569

with ground and satellite data, achieves similar results to the nonlinear QRF method of UU,570

which uses only ground data.571

As shown by Table 5, for intra-day forecasts, the same comments made above for intra-572

hour forecasts still hold. However, except for ISE, the only participant integrating NWP573

forecasts, one can observe a strong decrease in forecast skill particularly for PIMENT for574

which a decrease of 25 points in the mean skill score is noted. Similar to deterministic575

forecasts (see Figure 2), with increasing forecast horizon, the positive impact of integrating576

NWP forecasts in the modelling process is clearly demonstrated.577

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 53.8 ± 5.6 34.6 ± 6.7 4.5 ± 0.3 101.8 ± 5.4 67.9 ± 8.3
PIMENT 55.2 ± 10.3 32.9 ± 12.5 3.9 ± 0.7 99.7 ± 9.6 72.9 ± 15.4
ISE 43.9 ± 6.6 46.6 ± 8.1 0.8 ± 0.2 107.9 ± 6.5 59.4 ± 9.4
UU 48.3 ± 8.4 41.3 ± 10.2 1.1 ± 0.2 103.8 ± 8.3 64.1 ± 12.2
LES 47.1 ± 8.6 42.8 ± 10.4 1.5 ± 0.3 105.5 ± 8.3 62.7 ± 12.1
BLEND-GARCH 47.7 ± 6.9 42.1 ± 8.3 2.0 ± 0.3 105.4 ± 6.6 61.6 ± 9.2
BLEND-LQR 47.3 ± 6.4 42.6 ± 7.8 2.1 ± 0.2 105.9 ± 6.2 61.4 ± 9.2
BLEND-QRF 44.2 ± 5.9 46.3 ± 7.2 1.1 ± 0.1 107.9 ± 5.8 59.5 ± 8.6

Table 4: Intra-hour forecasts overall results. For each method, the metrics are presented as “mean ± standard
deviation,” calculated over all forecast horizons. For these overall results, the CRPS of the CSD-CLIM is
82.3 W.m−2 and the uncertainty component UNC of the CRPS is 150.8 W.m−2

.
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Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 76.0 ± 4.0 7.7 ± 4.9 4.7 ± 0.1 79.8 ± 3.9 105.3 ± 6.5
ISE 56.0 ± 2.0 31.9 ± 2.5 1.3 ± 0.2 96.3 ± 1.9 76.6 ± 2.7
UU 69.3 ± 5.6 15.8 ± 6.8 1.6 ± 0.2 83.3 ± 5.4 96.3 ± 8.9
LES 69.4 ± 5.5 15.6 ± 6.7 2.7 ± 0.4 84.3 ± 5.1 94.5 ± 8.3
BLEND-GARCH 60.4 ± 2.2 26.6 ± 2.6 2.9 ± 0.3 93.6 ± 1.8 79.4 ± 3.0
BLEND-LQR 59.2 ± 2.0 28.0 ± 2.4 3.1 ± 0.4 94.9 ± 1.6 79.1 ± 2.9
BLEND-QRF 55.5 ± 2.0 32.5 ± 2.5 1.7 ± 0.2 97.2 ± 1.8 75.7 ± 2.8

Table 5: Intra-day forecasts overall results. For each method, the metrics are presented as “mean ± standard
deviation,” calculated over all forecast horizons. OIE has "NA" values since OIE method is limited to intra-
hour forecasting.

We complement the above quantitative metrics analysis summarized for intra-day and578

day-ahead by plotting over all the forecast horizons the numerical scores selected for this579

benchmarking exercise namely CRPS, CRPS reliability, CRPS resolution, MAE and CRPS580

skill score (see Figure 4). It should also be noted that we deliberately use the same Y-scale581

for the CRPS and MAE plots to emphasize the improvement in quality brought by the582

probabilistic approach. Indeed, as shown by Figures 4a and 4b, the CRPS (i.e., the MAE)583

of the median of the predictive distribution is clearly worse than the CRPS of the entire584

predictive distribution.585

As shown by all the plots, the highest overall skill of the ISE forecasts is clearly demon-586

strated irrespective of the forecast horizon. In terms of CRPS skill score, over the whole587

range of forecast horizons, the best performer is ISE with skill scores between 60% and588

almost 30% while PIMENT forecasts lead to the worst forecasting results with a CRPS skill589

score ranging between 55% and almost 0%590

Again, the specific method developed by OIE does not outperform the other methods.591

The forecasts issued by this technique are clearly non reliable and confirms the visual in-592

spection of the related reliability diagram.593
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Figure 4: CRPS and its associated decomposition for all stations. Average GHI for all sites is 382.4 W.m−2

and can be used to calculate the relative counterparts of the different metrics. Notice that the same Y-scale
is used for the CRPS and MAE plots to highlight the improvement brought by the probabilistic approach.

6.2.2. Results for each site594

To gain a deeper insight in the performances of the different methods, Figure 5 focuses595

on the CRPS values obtained by each contestant for each of the eight sites. As shown,596
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again, the best CRPS values are obtained by ISE whatever the location. Interestingly, the597

parametric model of PIMENT cannot beat the climatological model CSD-CLIM for some598

sites namely CAR, MIL and TAB for certain forecast horizons.599

For the site TAB which is located in the South of Spain and corresponds to a semi-arid600

climate (see Koppen-Geiger classification provided in Table 3) and which experiences a high601

share of clear skies PIMENT is outerperformed by CSD-CLIM at 1h lead time while at 2h602

lead time, this is the case of LES and UU methods. Notice again the similar CRPS behavior603

of LES and UU models.604
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Figure 5: CRPS for the different locations. Table 3 lists the average GHI of each site that can be used to
compute the relative CRPS
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Finally, the interested reader is directed to Appendix 10 where results related to the 8605

sites are tabulated.606

7. Impact of a high quality point forecast on the skills of the probabilistic meth-607

ods608

In the previous Section 6, we observed that the ISE forecasting methodology clearly609

outperforms the other methods. We hypothesize that the skill of the ISE method comes610

from the blended point forecasts which are used by the Analog Ensemble technique and not611

necessarily by the Analog technique by itself.612

Method Forecasting technology Input data
BLEND-GARCH ISE blended point fcst + GARCH ground data+SAT+NWP
BLEND-LQR ISE blended point fcst + LQR technique ground data+SAT+NWP
BLEND-QRF ISE blended point fcst + QRF technique ground data+SAT+NWP

Table 6: New proposed forecasting methods

In order to confirm our assumption, we use the same blended point forecasts as inputs to613

three other approaches to generate probabilistic forecasts, including the PIMENT parametric614

GARCH approach, applied to ARMA point forecasts before. This new forecast is denoted615

BLEND-GARCH. In addition, we designed two other models based respectively on the616

LQR and QRF technique that use as input the blended ISE forecasts. These 2 new models617

are denoted BLEND-LQR and BLEND-QRF. Table 6 lists the new combinations of the618

ISE blended point forecast with the different techniques employed to generate the quantile619

forecasts. The results of the newly proposed methods are listed in the last 3 lines of Table620

4 and Table 5.621

The combination BLEND-GARCH clearly improves the original PIMENT method for622

all the considered metrics. In particular, for the intra-hour scenario, the gain in average skill623

score is 9 points while for intra-day forecast, the gain in average forecast skill is 19 points.624

The decomposition of the CRPS permits to highlight the improvement in resolution brought625

by the BLEND-GARCH combination.626

Regardless of the scenario (intra-hour or intra-day forecasts), we can state that the627

BLEND-GARCH and BLEND-LQR exhibit similar performances. The same statement is628

also valid for BLEND-QRF and ISE forecasts.629

Specifically, for intra-day forecasts, the BLEND-QRF slightly outperforms the original630

ISE method in terms of forecast skill.631

Again, for a better inspection of the results, we provide the visual display of the metrics.632

Here also, in Figure 6 the metrics are computed from the aggregation of forecasts and GHI633

data of all sites while Figure 7 plots the CRPS obtained on each site. Notice that, for sake of634

comparison, the metrics related to the ISE and PIMENT previous methods are also plotted.635

As shown by Figure 6, irrespective of the forecast horizon and metric, a clear improvement636

is brought by using the blended point forecasts. For instance, Figure 6e shows that the CRPS637
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skill score of the new BLEND-GARCH now ranges from 58% to 22% instead of 56% to 1%638

obtained by the previous PIMENT method. The improvement is more pronounced at higher639

forecasting horizons and at the last forecast horizon the skill score of the previous PIMENT640

method based on ground measurements only is increased by almost 22 percentage points.641

Also, combining the blended forecasts with techniques like LQR or QRF improves the642

skills of the probabilistic forecasts. From the decomposition of the CRPS into REL and643

RES, it appears that the BLEND-QRF slighlty outperforms the ISE method in terms of644

resolution. However, the ISE method is still the best performer in terms of reliability.645

Figure 7 displays the CRPS obtained by the new combinations for each site under study.646

Now, all the new proposed forecasting techniques beat the CSD-CLIM model but for the site647

TAB (see Figure 7g) the CSD-CLIM outperforms the BLEND-GARCH from a 2h forecast648

horizon. Note that for the site TAB, the BLEND-QRF exhibits the best skill, a considerable649

improvement compared to the Analog Ensemble is found form two hour on-wards.650

From the previous results, we can conclude that the use of the blended point forecasts651

of participant ISE improves substantially the PIMENT parametric approach forecasting652

models. Further, the improvements are slighty better when the blended point forecasts are653

inputted to a nonlinear machine learning technique such as QRF.654

In terms of reliability diagrams, the situation is also clearly improved when one compares655

Figure 3f against 3b albeit it seems that BLEND-GARCH intra-hour forcecasts still suffer656

from a lack of reliability at high nominal proportions. Moreover, Figures 3g and 3h reveal657

that the new proposed method BLEND-LQR and BLEND-QRF generate reliable forecats.658
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Figure 6: CRPS and its associated decomposition for all stations and for the new proposed models
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Figure 7: Improved CRPS by using the blending deterministic forecasts of Fraunhofer ISE for the different
locations.
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8. Summary and conclusion659

A benchmarking procedure set up by a group of experts of the IEA PVPS Task 16 was660

implemented to assess the performance of intra-hour and intra-day probabilistic solar irradi-661

ance forecasts. This procedure was utilized to evaluate eight distinct forecasting algorithms.662

In the initial stage, the benchmarking exercise involved evaluating probabilistic forecasts663

submitted directly by five different participants. This initial comparison of forecasts using664

different input data and methods revealed a significant variation in performance. Partic-665

ularly, during this first step, a probabilistic forecast that utilized a blended point forecast666

outperformed the other methods. In a second analysis, to better understand the impact of667

input data versus methodology on forecast quality, we combined the well-performing blended668

point forecast from the first comparison with different probabilistic approaches.669

As mentioned earlier, the first stage of this work revealed that the initially proposed670

methods exhibit varying levels of forecast quality. In particular, the satellite-based method671

recently developed by OIE, which directly generates the set of quantile forecasts from a CMV672

model, suffers from a lack of reliability that significantly impacts its overall performance.673

However, a calibration technique could be employed to enhance this attribute. As expected,674

a parametric approach, like the one proposed by PIMENT is not suitable to provide high675

quality probabilistic solar forecast, even with the high performing point forecast as input.676

The second stage of this study demonstrated that a high quality point forecast (that677

blends measurements, satellite-based and NWP forecasts) used in combination with a sta-678

tistical technique is able to generate probabilistic forecasts with high quality. Overall, the679

skill scores of methods employing the blended point forecast vary between 42% and 46% for680

the intra-hour scenario and between 27% and 32% for the intra-day scenario. In contrast,681

methods that do not utilize the blended point forecast but are based on measurements and/or682

satellite data only exhibit skill scores ranging from 33% to 43% for intra-hour forecasts and683

from 8% to 16% for intra-day forecasts.684

Besides a good forecast skill, the methodology that consists in generating probabilistic685

forecasts in a two step approach has the advantage that it is easy to implement in combina-686

tion with blended deterministic forecasts that are well understood and used operationally. It687

allows to benefit from high quality deterministic point forecasts with comparatively simple688

probabilistic techniques applied in a post-processing step.689

An alternative to blending the deterministic forecasts before applying the probabilistic690

techniques, would be to directly use the three deterministic forecasts as input to these691

techniques. LQR or QRF can be applied to generate quantile forecasts from different inputs692

in one step. For the AnEn method the different inputs can be combined with predictor693

weighting. Setting up these more complex models will be subject of future investigations.694

Ongoing efforts by members of the IEA PVPS Task 16 involve the continuing develop-695

ment of solar probabilistic methods. Consequently, the evaluation and comparison of prob-696

abilistic forecasts will persist, and further analysis will be conducted using recent ground697

measurement data, satellite or NWP data. This continuing research aims to enhance the698

quality of solar irradiance probabilistic forecasts.699
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10. Appendices713

Appendix A Intra-hour and intra-day forecasts results site CAB714

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 48.8 ± 6.1 40.3 ± 7.5 4.7 ± 0.4 81.8 ± 5.7 61.1 ± 8.5
PIMENT 50.9 ± 8.6 37.8 ± 10.5 2.1 ± 0.2 77.1 ± 8.4 69.2 ± 13.2
ISE 40.4 ± 5.3 50.7 ± 6.5 0.9 ± 0.2 86.4 ± 5.1 55.4 ± 7.6
UU 47.4 ± 7.8 42.1 ± 9.5 1.8 ± 0.4 80.3 ± 7.4 63.7 ± 11.4
LES 44.3 ± 7.4 45.9 ± 9.1 1.7 ± 0.5 83.2 ± 7.0 59.8 ± 10.2
BLEND-GARCH 41.9 ± 5.4 48.8 ± 6.6 1.9 ± 0.3 85.8 ± 5.1 55.0 ± 7.6
BLEND-LQR 42.2 ± 5.3 48.4 ± 6.5 2.1 ± 0.4 85.7 ± 4.9 54.7 ± 7.3
BLEND-QRF 39.9 ± 4.9 51.3 ± 6.0 1.1 ± 0.2 87.0 ± 4.7 54.3 ± 7.0

Table 7: Same as for Table 4 (intra-hour) but for site CAB. For site CAB, the CRPS of the CSD-CLIM is
81.8 W.m−2 and the uncertainty component UNC of the CRPS is 125.9 W.m−2.

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 69.1 ± 3.8 15.6 ± 4.6 2.4 ± 0.2 59.1 ± 3.6 98.2 ± 6.1
ISE 50.2 ± 1.6 38.7 ± 1.9 1.0 ± 0.1 76.6 ± 1.6 69.4 ± 2.4
UU 68.4 ± 5.9 16.5 ± 7.2 3.7 ± 0.8 61.2 ± 5.1 96.3 ± 9.6
LES 65.6 ± 5.3 19.9 ± 6.4 3.7 ± 0.7 64.0 ± 4.6 89.8 ± 8.2
BLEND-GARCH 51.7 ± 1.5 36.9 ± 1.8 2.2 ± 0.1 76.4 ± 1.6 69.5 ± 2.2
BLEND-QRF 49.2 ± 1.6 39.9 ± 2.0 1.3 ± 0.1 78.0 ± 1.7 67.8 ± 2.5
BLEND-LQR 52.0 ± 1.5 36.5 ± 1.9 2.7 ± 0.0 76.6 ± 1.6 68.5 ± 2.4
BLEND-QRF 49.2 ± 1.6 39.9 ± 2.0 1.3 ± 0.1 78.0 ± 1.7 67.8 ± 2.5

Table 8: Same as for Table 5 (intra-day) but for site CAB
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Appendix B Intra-hour and intra-day forecasts results site CAR715

Method CRPS CRPSS REL RES MAE
OIE 49.2 ± 5.1 32.8 ± 7.0 4.3 ± 0.4 108.5 ± 5.1 63.0 ± 7.4
PIMENT 53.3 ± 10.9 27.2 ± 14.9 5.3± 0.7 105.4 ± 10.2 68.8 ± 16.3
ISE 39.6 ± 7.2 46.0 ± 9.9 1.1 ± 0.3 114.9 ± 7.0 53.3 ± 10.0
UU 43.8 ± 8.9 40.2 ± 12.2 1.1 ± 0.2 110.7 ± 8.8 58.0 ± 12.9
LES 43.1 ± 8.7 41.1 ± 12.0 1.7 ± 0.3 112.0 ± 8.5 57.3 ± 12.6
BLEND-GARCH 44.3 ± 7.4 39.5 ± 10.2 2.9 ± 0.4 112.0± 7.0 55.8 ± 9.5
BLEND-LQR 43.1± 6.6 41.2 ± 9.0 2.9 ± 0.2 113.2 ± 6.3 55.0± 9.6
BLEND-QRF 40.0 ± 6.2 45.4 ± 8.5 1.3 ± 0.2 114.7 ± 6.1 53.2 ± 8.9

Table 9: Same as for Table 4 (intra-hour) but for site CAR. For site CAR, the CRPS of the CSD-CLIM is
73.2 W.m−2 and the uncertainty component UNC of the CRPS is 152.3 W.m−2.

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 74.9 ± 4.4 -2.3 ± 6.0 6.3 ± 0.2 84.9 ± 4.2 102.2 ± 7.0
ISE 52.6 ± 2.0 28.2 ± 2.7 1.8 ± 0.2 102.7± 1.8 71.0 ± 2.6
UU 65.2 ± 5.6 10.9 ± 7.7 1.3 ± 0.1 89.5 ± 5.7 90.8 ± 8.9
LES 64.7 ± 5.5 11.6 ± 7.5 2.5 ± 0.2 91.1 ± 5.3 88.1 ± 8.0
BLEND-GARCH 57.7 ± 2.0 21.2 ± 2.8 3.7 ± 0.2 99.4 ± 1.8 73.7 ± 2.4
BLEND-LQR 55.3 ± 1.8 24.4 ± 2.5 4.1 ± 0.4 102.2 ± 1.4 73.6 ± 2.6
BLEND-QRF 51.7 ± 1.9 29.4 ± 2.6 2.1 ± 0.3 103.8 ± 1.6 69.7 ± 2.6

Table 10: Same as for Table 5 (intra-day) but for site CAR

Appendix C Intra-hour and intra-day forecasts results site CEN716

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 60.9 ± 6.4 30.6 ± 7.3 5.5 ± 0.3 96.2 ± 6.5 78.4 ± 10.1
PIMENT 60.9 ± 10.6 30.5 ± 12.1 4.0 ± 0.7 94.6 ± 9.9 82.5 ± 16.2
ISE 50.6 ± 7.4 42.3 ± 8.5 1.0 ± 0.2 102.0 ± 7.2 69.4 ± 10.9
UU 53.7 ± 8.7 38.7 ± 9.9 0.9 ± 0.1 98.7 ± 8.6 73.1 ± 13.2
LES 53.1 ± 9.0 39.5 ± 10.2 1.2 ± 0.3 99.7 ± 8.7 72.2 ± 13.0
BLEND-GARCH 53.8 ± 7.8 38.7 ± 8.9 1.9 ± 0.3 99.7 ± 7.5 72.0 ± 11.0
BLEND-LQR 53.8 ± 7.5 38.6 ± 8.6 2.4 ± 0.5 100.1 ± 7.1 71.4 ± 11.3
BLEND-QRF 51.0 ± 6.9 41.8 ± 7.9 0.8 ± 0.1 101.4 ± 6.8 70.3 ± 10.4

Table 11: Same as for Table 4 (intra-hour) but for site CEN. For site CEN, the CRPS of the CSD-CLIM is
87.7 W.m−2 and the uncertainty component UNC of the CRPS is 153.1 W.m−2.
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Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 82.8 ± 4.2 5.6 ± 4.8 5.3 ± 0.1 74.1 ± 4.1 116.6 ± 6.6
ISE 65.2 ± 2.6 25.6 ± 2.9 1.7 ± 0.2 88.1 ± 2.4 90.6 ± 3.5
UU 75.1 ± 5.6 14.4 ± 6.4 0.8 ± 0.1 77.3 ± 5.7 107.9 ± 9.4
LES 75.4 ± 5.3 14.1 ± 6.0 2.1 ± 0.2 78.2 ± 5.0 105.8 ± 8.6
BLEND-GARCH 69.2 ± 2.6 21.1 ± 3.0 2.7 ± 0.2 85.0 ± 2.4 94.0 ± 3.5
BLEND-LQR 68.3 ± 2.3 22.2 ± 2.7 3.2 ± 0.2 86.5 ± 2.1 94.0 ± 3.7
BLEND-QRF 65.2 ± 2.6 25.7 ± 3.0 1.1 ± 0.1 87.4 ± 2.6 91.9 ± 3.9

Table 12: Same as for Table 5 (intra-day) but for site CEN

Appendix D Intra-hour and intra-day forecasts results site MIL717

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 50.2 ± 4.9 36.0 ± 6.2 4.2 ± 0.4 109.6 ± 4.6 63.8 ± 7.4
PIMENT 53.7 ± 10.5 31.5 ± 13.3 6.3 ± 1.1 108.2± 9.4 66.5 ± 15.2
ISE 41.1 ± 7.0 47.5 ± 8.9 1.4 ± 0.4 115.8 ± 6.6 54.6 ± 9.7
UU 43.9 ± 8.4 44.0 ± 10.7 0.9 ± 0.1 112.6 ± 8.3 58.3 ± 12.2
LES 44.8 ± 8.2 42.8 ± 10.4 3.8 ± 0.5 114.6 ± 7.7 56.1 ± 11.3
BLEND-GARCH 46.8 ± 7.0 40.2 ± 9.0 4.3 ± 0.6 113.1 ± 6.4 57.2 ± 9.2
BLEND-LQR 46.0 ± 6.7 41.3 ± 8.6 4.4 ± 0.8 114.0 ± 5.9 58.8 ± 9.3
BLEND-QRF 42.9 ± 6.0 45.2 ± 7.6 2.6 ± 0.5 115.3 ± 5.5 56.3 ± 8.2

Table 13: Same as for Table 4 (intra-hour) but for site MIL. For site MIL, the CRPS of the CSD-CLIM is
78.4 W.m−2 and the uncertainty component UNC of the CRPS is 154.6 W.m−2.

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 75.7 ± 4.6 3.4 ± 5.8 7.8 ± 0.1 87.8 ± 4.5 100.2 ± 7.2
ISE 54.9 ± 2.6 30.0 ± 3.3 3.2 ± 0.6 104.0 ± 2.0 73.4 ± 3.2
UU 65.4 ± 6.4 16.5 ± 8.2 0.9 ± 0.1 91.1 ± 6.3 91.0 ± 10.0
LES 67.0 ± 6.2 14.5 ± 7.9 5.5 ± 0.6 94.1 ± 5.6 86.5 ± 9.0
BLEND-GARCH 61.0 ± 2.8 22.2 ± 3.5 6.5 ± 0.7 101.1 ± 2.1 77.4 ± 4.3
BLEND-LQR 60.2 ± 2.8 23.2 ± 3.6 8.0 ± 1.3 103.4 ± 1.6 79.9 ± 4.6
BLEND-QRF 55.1 ± 2.4 29.8 ± 3.0 4.3 ± 0.4 104.8 ± 2.0 72.7 ± 3.1

Table 14: Same as for Table 5 (intra-day) but for site MIL
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Appendix E Intra-hour and intra-day forecasts results site PAL718

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 55.7 ± 6.5 36.7 ± 7.3 5.3 ± 0.5 92.4 ± 6.0 69.3 ± 9.1
PIMENT 56.5 ± 9.2 35.8 ± 10.5 2.9 ± 0.4 89.3 ± 8.9 76.9 ± 14.3
ISE 45.0 ± 5.7 48.9 ± 6.5 1.2 ± 0.2 99.0 ± 5.5 61.3 ± 8.2
UU 52.9 ± 7.8 39.9 ± 8.9 2.0 ± 0.3 92.0 ± 7.6 70.3 ± 11.6
LES 50.0 ± 8.5 43.2 ± 9.6 1.7 ± 0.4 94.6 ± 8.1 68.0 ± 11.9
BLEND-GARCH 47.3 ± 5.8 46.3 ± 6.6 1.8 ± 0.2 97.4 ± 5.7 62.3 ± 8.1
BLEND-LQR 47.9 ± 5.7 45.5 ± 6.5 2.2 ± 0.3 97.1± 5.4 62.2 ± 8.1
BLEND-QRF 45.2 ± 5.4 48.6 ± 6.1 1.3 ± 0.2 98.9 ± 5.2 61.4 ± 7.8

Table 15: Same as for Table 4 (intra-hour) but for site PAL. For site PAL, the CRPS of the CSD-CLIM is
88.0 W.m−2 and the uncertainty component UNC of the CRPS is 140.5 W.m−2.

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 76.9 ± 4.5 12.6 ± 5.1 3.6 ± 0.2 69.6 ± 4.3 109.4 ±7.3
ISE 55.1 ± 1.4 37.4 ± 1.6 1.4 ± 0.1 89.2 ± 1.5 75.9 ± 2.0
UU 73.1 ± 5.8 16.9 ± 6.6 2.7 ± 0.3 72.5 ± 5.5 102.6 ± 9.8
LES 73.7 ± 6.0 16.2 ± 6.8 3.4 ± 0.6 72.5 ± 5.4 102.3 ± 9.4
BLEND-GARCH 57.3 ± 1.6 34.9 ± 1.8 2.2 ± 0.2 87.8 ± 1.4 76.9 ± 2.3
BLEND-LQR 58.0 ± 1.5 34.1 ± 1.8 3.2 ± 0.3 88.0 ± 1.2 76.9 ±2.3
BLEND-QRF 54.9 ± 1.7 37.6 ± 1.9 1.8 ± 0.2 89.7 ± 1.5 75.4 ± 2.3

Table 16: Same as for Table 5 (intra-day) but for site PAL

Appendix F Intra-hour and intra-day forecasts results site PAY719

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 53.3 ± 5.7 40.1 ± 6.4 4.7± 0.3 105.3 ± 5.8 68.4 ± 9.0
PIMENT 57.4 ± 11.7 35.5 ± 13.1 4.6 ± 0.6 101.2 ± 11.1 75.2 ± 17.7
ISE 44.7 ± 7.6 49.8 ± 8.5 0.9 ± 0.1 110.1 ± 7.4 61.1 ± 11.0
UU 48.0 ± 9.3 46.1 ± 10.5 1.3 ± 0.3 107.2 ± 9.1 64.0 ± 13.3
LES 48.2 ± 9.7 45.8 ± 10.9 2.0 ±0.5 107.7 ± 9.2 64.3 ± 13.8
BLEND-GARCH 50.1 ± 8.0 43.7 ± 9.0 3.0 ± 0.3 106.8 ± 7.8 64.9 ± 11.2
BLEND-LQR 49.5 ± 7.7 44.4 ± 8.6 3.4 ± 0.6 107.8 ± 7.1 64.6 ± 11.2
BLEND-QRF 45.6 ± 6.8 48.7 ± 7.6 1.8 ± 0.2 110.1 ± 6.6 61.7 ± 10.1

Table 17: Same as for Table 4 (intra-hour) but for site PAY. For site PAY, the CRPS of the CSD-CLIM is
89.0 W.m−2 and the uncertainty component UNC of the CRPS is 151.6 W.m−2.
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Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 81.1 ± 4.3 8.8 ± 4.8 5.5 ± 0.1 78.2 ± 4.2 112.0 ± 6.7
ISE 60.7 ± 3.2 31.8 ± 3.6 1.4 ± 0.2 94.6 ± 3.0 84.7 ± 4.5
UU 71.9 ± 6.0 19.2 ± 6.7 1.9 ± 0.2 83.9 ± 5.8 100.0 ± 9.4
LES 73.8 ± 6.3 17.1 ± 7.1 4.6 ± 1.1 84.7 ± 5.2 101.2 ± 9.4
BLEND-GARCH 66.8 ± 3.2 24.9 ± 3.6 4.1 ± 0.4 91.2 ± 2.8 88.4 ± 4.3
BLEND-LQR 65.8 ± 3.1 26.1 ± 3.5 5.4 ± 0.6 93.5 ± 2.5 88.4 ± 4.4
BLEND-QRF 61.2 ± 3.4 31.2 ± 3.9 2.7 ± 0.3 95.4 ± 3.2 84.3 ± 4.8

Table 18: Same as for Table 5 (intra-day) but for site PAY

Appendix G Intra-hour and intra-day forecasts results site TAB720

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 56.3 ± 4.9 4.1 ± 8.4 6.2 ± 0.8 111.3 ± 4.2 70.2 ± 7.1
PIMENT 55.9 ± 10.6 4.9 ± 18.1 6.0 ± 1.2 111.5 ± 9.5 72.7 ± 16.0
ISE 45.9 ± 7.7 21.9 ± 13.1 1.6 ± 0.5 117.2 ± 7.2 59.9 ± 10.5
UU 47.7 ± 8.3 18.7 ± 14.2 1.4 ± 0.3 115.1 ± 8.0 61.2 ± 11.5
LES 46.2 ± 8.9 21.4 ± 15.1 1.2 ± 0.2 116.4 ± 8.7 61.2 ± 12.6
BLEND-GARCH 51.5 ± 7.8 12.3 ± 13.3 3.7 ± 0.9 113.7 ± 6.9 63.9 ± 9.6
BLEND-LQR 48.7 ± 6.3 17.1 ± 10.7 3.1 ± 0.3 115.8 ± 6.0 63.6 ± 9.1
BLEND-QRF 46.1 ± 6.3 21.5 ± 10.8 1.6 ± 0.3 116.9 ± 6.1 60.5 ± 8.8

Table 19: Same as for Table 4 (intra-hour) but for site TAB. For site TAB, the CRPS of the CSD-CLIM is
58.7 W.m−2 and the uncertainty component UNC of the CRPS is 160.0 W.m−2.

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 73.8 ± 2.6 -25.7 ± 4.3 7.8 ± 0.4 95.5 ± 2.2 101.2 ± 4.2
ISE 56.2 ± 1.2 4.2 ± 2.0 3.4 ± 0.6 108.6 ± 0.5 73.9 ± 1.2
UU 64.9 ± 3.3 -10.5 ± 5.7 1.7 ± 0.1 98.2 ± 3.4 84.1 ± 4.2
LES 65.5 ± 3.7 -11.6 ± 6.4 2.1 ± 0.3 98.0 ± 3.4 87.4 ± 4.6
BLEND-GARCH 63.0 ± 1.6 -7.2 ± 2.7 6.4 ± 0.9 104.9 ± 0.7 80.1 ± 2.5
BLEND-LQR 57.0 ± 0.8 2.9 ± 1.4 4.1 ± 0.5 108.5 ± 0.4 76.6 ± 1.3
BLEND-QRF 53.8 ± 0.6 8.3 ± 1.1 2.3 ± 0.2 109.9 ± 0.5 71.7 ± 0.8

Table 20: Same as for Table 5 (intra-day) but for site TAB
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Appendix H Intra-hour and intra-day forecasts results site TOR721

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE 55.4 ± 5.3 34.5 ± 6.3 7.3 ± 0.4 79.9 ± 4.9 67.3 ± 7.6
PIMENT 52.4 ± 9.0 38.0 ± 10.7 2.6 ± 0.2 78.1 ± 8.8 70.0 ± 13.4
ISE 43.0 ± 4.8 49.1 ± 5.6 0.9 ± 0.0 85.8 ± 4.8 59.3 ± 7.0
UU 48.8 ± 7.8 42.2 ± 9.3 2.3 ± 0.6 81.4 ± 7.3 64.4 ± 11.4
LES 45.9 ± 7.9 45.7 ± 9.3 1.7 ± 0.5 83.7 ± 7.4 62.1 ± 10.7
BLEND-GARCH 44.8 ± 5.2 47.0 ± 6.2 1.7 ± 0.1 84.8 ± 5.1 60.0 ± 7.2
BLEND-LQR 46.1 ± 5.2 45.5 ± 6.2 2.8 ± 0.4 84.7 ± 4.9 59.4 ± 7.3
BLEND-QRF 41.9 ± 4.6 50.4 ± 5.4 1.4 ± 0.1 87.4 ± 4.5 56.9 ± 6.9

Table 21: Same as for Table 4 (intra-hour) but for site TOR. For site TOR, the CRPS of the CSD-CLIM is
84.5 W.m−2 and the uncertainty component UNC of the CRPS is 125.9 W.m−2.

Method CRPS (W/m2) CRPSS (%) REL (W/m2) RES (W/m2) MAE (W/m2)
OIE NA NA NA NA NA
PIMENT 72.0 ± 4.1 14.8 ± 4.8 2.8 ± 0.1 58.8 ± 4.0 100.9 ± 6.8
ISE 51.8 ± 1.6 38.7 ± 1.9 1.1 ± 0.1 77.2 ± 1.6 72.0 ± 2.3
UU 70.7 ± 6.3 16.3 ± 7.4 5.1 ± 1.0 62.3 ± 5.3 98.3 ± 10.9
LES 69.1 ± 6.1 18.3 ± 7.2 4.6 ± 1.0 63.5 ± 5.1 93.7 ± 9.4
BLEND-GARCH 54.7 ± 1.9 35.3 ± 2.2 2.5 ± 0.3 75.7 ± 1.6 72.6 ± 2.3
BLEND-LQR 56.2 ± 1.9 33.4 ± 2.2 4.2 ± 0.4 75.9 ± 1.5 72.4 ± 2.2
BLEND-QRF 51.6 ± 2.0 39.0 ± 2.4 2.2 ± 0.2 78.5 ± 1.8 70.2 ± 2.6

Table 22: Same as for Table 5 (intra-day) but for site TOR
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