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Abstract: 12 

Accurate estimation of energy production in photovoltaic power plants is crucial for project feasibility 13 

assessment and O&M practices. This study evaluates and analyzes the impact of combining different physical 14 

models for PV power modeling, varying different techniques for global horizontal irradiance (GHI) separation, 15 

irradiance transposition, and optical, thermal and electrical modeling. High-resolution data collected at one-minute 16 

intervals from a 2.5 MWp PV plant located in the Brazilian semi-arid region are used. The PV generation is 17 

examined and modeled based on ground-measured GHI, considering a total of 11,340 possible combinations, 18 

through seven separation models, nine transposition models, four optical models, nine thermal models, and five 19 

electrical models. It is observed that the selection of physical models significantly impacts the estimation, when 20 

adopting inaccurate physical models relative differences of 49% in nMAE and 26% in nRMSE were evidenced. 21 

The models which achieved the best results among the top performers were Starke2 separation model, Perez's 22 

transposition model, Martin-Ruiz's optical model, Sandia or Mattei's thermal model and De Soto's electrical model. 23 

Additionally, selecting adequate models based on the literature proved to be a good choice for modeling, almost 24 

achieving the optimal performance of the best combinations.  25 

Keywords: Photovoltaic modeling; Physical models; Grid-connected PV plants; 1-min data; GHI separation; 26 

Brazilian semi-arid;  27 

1. Introduction 28 

 29 

Photovoltaic (PV) energy has witnessed a remarkable surge in recent years, reaching 1411 GW in 2023 [1] 30 

with a projection of 5457 GW in 2030 under the 1.5°C scenario [2]. Its growth has been accelerated by 31 

implementing incentive policies in various countries, leading to technological advancements and cost reductions 32 

throughout the entire value chain of PV solar energy. The growing expansion of the photovoltaic market has led 33 

to a substantial increase in the number and size of photovoltaic systems, as well as in investment allocations and 34 

the associated risk-return dynamics [3]. Consequently, it becomes increasingly crucial for designers, investors, and 35 

financial institutions to identify and mitigate technical risks that could impact the feasibility and operation of these 36 

projects [4]. In grid-connected photovoltaic systems, the quantification of solar energy production is essential 37 

during the development and operational phases. In the development phase, it is required to assess the potential and 38 

profitability of PV power plants by estimating the expected site-specific performance. During operation, it enables 39 

the evaluation of overall system performance by comparing expected generation from modeling with actual 40 

measured generation [5]. 41 

The assessment of PV system performance and energy generation relies on various modeling tools, free or 42 

paid, designed to simulate electricity generation. These tools serve as valuable resources for solar PV designers 43 

and operators. They employ a series of chained models to predict energy generation based on the specifications of 44 

the PV system and meteorological data. While these simulations typically operate at an hourly resolution, recent 45 

studies have shown the importance of sub-hourly resolution, particularly minute-resolution, for accurately sizing 46 

inverters [6], implementing operational best practices [7], and conducting accurate simulations of photovoltaic 47 

systems [8, 9].  48 

Several models exist in the literature, and their application is strongly dependent on the climatic conditions of 49 

the site [10]. Evaluating models that best suit the local climate and the photovoltaic system characteristics is 50 

critical. This ensures accurate estimation of the PV energy production, thereby minimizing uncertainties and 51 

contractual risks. Another aspect that may impact accurate estimation is the photovoltaic system losses, represented 52 

by the derating factor. An incorrect derating factor can result in significant errors in PV estimates [11]. An over-53 

optimistic value may overestimate energy production, risking project viability. Conversely, a conservative factor 54 

can distort estimates, causing misguided investments. Thevenard and Pelland [12] discussed the uncertainty 55 

involved in the performance evaluation of large PV systems; the authors selected a derating factor of 3% with a 56 

2% margin of uncertainty and observed that a deeper comprehension of some losses, such as dirt and soiling, could 57 



have improved estimates quality. The derating factor may exhibit variations in its magnitude depending on climatic 58 

conditions [13]. Different derating factors can affect the bias behavior in the PV modeling chain. Thus, assessing 59 

the performance of physical models against potential derating factors remains essential. Despite all the above, little 60 

attention has been paid in the literature to 1-minute PV simulations and how to optimally couple the physical sub-61 

models for PV power estimation. 62 

In Hofmann and Seckmeyer [8], the influence of various irradiance models and their combinations on the 63 

simulation of PV systems was evaluated for the cold semi-arid climate (BSk) and other climates with distinct 64 

characteristics. The authors examined solar irradiance direct-diffuse separation and tilted-plane transposition 65 

models at different temporal resolutions (1-hour and 1-minute), observing that the PV system simulations should 66 

ideally utilize 1-minute data either measured or derived from hourly values, the latter referred as synthetic 1-minute 67 

data [14]. The authors emphasize the importance of employing simulations with high temporal resolution data for 68 

accurate photovoltaic system sizing, enabling the estimation of losses due to inverter clipping, as observed by 69 

Burger and Rüther [15]. Additionally, Hofmann and Seckmeyer highlight in [8] the significant impact of 70 

transposition models on modeling PV systems, showing the need to carefully select these models, considering that 71 

radiation modeling is highly dependent on the location. Mayer and Gróf in [10] conducted a more extensive 72 

analysis in terms of physical models, incorporating different radiation models (separation and transposition) and 73 

optical, thermal and electrical models for estimating PV generation based on 15-minute mesoscale Numerical 74 

Weather Prediction (NWP) data. The analysis was performed for photovoltaic systems installed in Hungary, which 75 

has high latitudes and typical temperate and continental climates (Cfa, Cfb, Dfa and Dfb). The authors observed 76 

that from NWP data, the most critical steps were GHI separation and irradiance transposition to the Plane of Array 77 

(POA). In addition, they observed that model selection has a high effect on simulation accuracy, reaching 78 

differences of up to 13% in the mean absolute error and 12% in the nRMSE. 79 

As researchers delve deeper into PV power modeling, there is a noticeable gap in the literature on several key 80 

issues that have not been addressed. These include questions about the impact of physical model selection on the 81 

accuracy of PV estimates in different climates, identifying critical modeling steps for accurate 1-minute simulation, 82 

and the effects of erroneous selection of the derating factor on the performance of physical models. These issues 83 

underscore the need to expand research efforts and experimental studies to clarify key aspects of PV modeling. 84 

 85 

1.1. Article’s contribution 86 

 87 

The present work evaluates and analyzes the impact of combining different physical models for PV power 88 

modeling in a site located at the large solar resource-rich semi-arid region of Brazil, also known as Sertão, varying 89 

the different techniques for global horizontal irradiance (GHI) separation, irradiance transposition, and optical, 90 

thermal and electrical modeling of the PV systems. It assesses the results of more than 11,340 combinational 91 

simulations compared to 1-minute data from a 2.5 MWp PV plant located in Petrolina-PE (9.11°S, 40.44°W) 92 

located in the Brazilian semi-arid region. Comparative analysis of physical models allows the identification of 93 

models that perform better in high temporal resolution, highlighting critical steps for accurate estimation and 94 

potential implications that physical models may present under different derating factor scenarios. In this manner, 95 

the main contributions of this work can be summarized as follows: 96 

● Compares 7 GHI separation models (designed at hourly or minutely resolution), 9 diffuse 97 

irradiance transposition models to the inclined plane, 4 optical, 9 thermal and 5 electrical models, 98 

identifying critical steps in PV generation modeling and techniques that tend to have better or 99 

worse performance. 100 

● Quantifies the impact that choosing inaccurate physical models can have on the simulation of PV 101 

systems based on high temporal resolution data. 102 

● Compare the results of the best-fit individual and coupled models with results from the literature, 103 

observing that the application of accurate models individually allows satisfactory statistical results 104 

to be achieved with a high level of reliability, but not necessarily the best combination. 105 

● Provides a first representative evaluation of the performance of physical models under different 106 

loss scenarios, demonstrating that the average behavior of the models is not affected by the 107 

derating factor adopted. 108 

 109 

1.2. Article’s outline  110 

 111 

The paper is organized as follows. Section 2 presents the state of the art regarding the models that are typically 112 

chained in the process of simulating PV systems, parting from GHI to PV power estimation. Section 3 covers the 113 

data treatment and qualification, the models combinatorial approach, and the statistical indicators selected for the 114 

assessment. Section 4 presents the analysis of estimating the PV power generation using the different model 115 

combinations, in which insights are provided from the 11,340 possible cases. Finally, the conclusions and future 116 

prospects are summarized in Section 5. 117 



2. Photovoltaic systems modeling 118 

 119 

Modeling PV systems is structured into two macro-steps: one involves quantifying the irradiance on the 120 

modules, and the other relates to the optical, thermal and electrical modeling of the panels and inverters. Figure 1 121 

illustrates the diagram of the PV power estimation process, grouping the models into conceptual categories 122 

(irradiance models, PV module models, inverter model). The inputs are solarimetric, meteorological and project 123 

data, as well as the PV losses adopted by the designer (discussed in section 2.4). The solarimetric data is then 124 

processed by the irradiance models, subdivided into GHI separation models and transposition models to obtain the 125 

Global Tilted Irradiance (GTI), also referred in the literature as the plane of array (POA) irradiance. Once the 126 

modules’ incident irradiance is estimated, the optical, thermal and electrical models are applied to obtain the direct 127 

current (DC) generation to be injected into the inverter. Finally, the inverter model performs the DC-AC 128 

conversion, outputting the power generation. 129 

 130 

Figure 1: Diagram of the PV simulation process, including the models chain, inputs and outputs. 131 

 132 
 133 

 134 

2.1. Irradiance Models 135 

 136 

In order to use the transposition models to estimate GTI, knowledge of the direct and diffuse components of 137 

the GHI is required. In many places, the direct and diffuse components are not measured due to the costs and effort 138 

involved in using tracking devices [16]. Therefore, designers often use GHI data, which needs to be divided into 139 

Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI). Various models exist for this purpose, 140 

but their accuracy in estimating radiation on the tilted plane can vary based on local climate, sky conditions and 141 

local characteristics [17]. 142 

2.1.1. GHI Separation Models 143 

 144 

The diffuse and direct components can be derived from GHI by examining the relationship between the diffuse 145 

fraction (kd, the ratio of DHI to GHI) and the clearness index (kt, the ratio of GHI to extraterrestrial irradiance on 146 

the horizontal plane), or by analyzing the transmittance of direct normal irradiance (kn, the ratio of DNI to incident 147 

extraterrestrial irradiance on the plane normal to radiation) as a function of kt. Once the relationships between kd 148 

vs. kt or kn vs. kt are established, it becomes possible to determine the diffuse or direct component accordingly. 149 

Subsequently, by using the irradiance relationship, also known as the closure equation, presented in Equation 1, it 150 

is possible to obtain the missing radiation component. 151 

  152 

 𝐺𝐻𝐼 = 𝐷𝑁𝐼 𝑐𝑜𝑠 𝜃𝑧  + 𝐷𝐻𝐼 (1) 
 153 

Where θz is the solar zenith angle, corresponding to the angle between the local zenith and the Sun’s center 154 

direction. 155 

A pioneering minute-based separation model was proposed by [18], referred to in this paper as ENGERER2, 156 

which considers the cloud enhancement events (over-irradiance). In [19], this model is reparametrized, giving rise 157 

to the ENGERER4 model, which was proposed for various temporal resolutions (1-min, 5-min, 10-min, 15-min, 158 

30-min, 1-h, and 1-day). However, as observed in Manni et al. [20], and Yang [21], this model has less ability to 159 

describe cloud enhancement events, often yielding inferior results to the original ENGERER2 model [21] and also 160 

to well-established hourly models in the literature such as SKARTVEIT or PEREZ [20]. 161 

Yang and Boland [22] proposed a modification to the ENGERER2 model, adding the hourly or 30-minute 162 

diffuse fraction obtained from satellite data. Due to the increased complexity of implementation, Yang [23] 163 

suggests modifying this model, replacing the satellite data diffuse fraction with the kd obtained from the 164 

ENGERER2 model at hourly resolution (𝑘𝑑,ℎ
𝐸𝑛𝑔𝑒𝑟𝑒𝑟2

). This parameter aims to describe low-frequency variations, 165 



similarly to a variability index. With this alteration, the model referred to as YANG4 is expressed as Equation 2, 166 

where AST is the apparent solar time and 𝛥𝑘𝑡𝑐 corresponds to the difference between the measured kt and the clear 167 

sky index obtained from the clear sky model TJ (Threlkeld and Jordan, 1957), which presents consistent results 168 

according to the works of Sun et al. [24] and Bright and Engerer [19]. The kde represents a portion of the diffuse 169 

fraction assigned to cloud enhancement events and is calculated as GHI minus GHI from TJ clear sky model (also 170 

known as clear sky irradiance, CSI) divided by GHI. 171 

 172 

 𝑘𝑑
𝑌𝐴𝑁𝐺4 = 𝐶 +

1 − 𝐶

1 + exp(𝛽0 + 𝛽1𝑘𝑡 + 𝛽2𝐴𝑆𝑇 + 𝛽3𝜃𝑧 + 𝛽4𝛥𝑘𝑡𝑐 + 𝛽6𝑘𝑑
𝐸𝑛𝑔𝑒𝑟𝑒𝑟2

) 
+ 𝛽5𝑘𝑑𝑒        (2) 

 173 

In [16], the Ridley, Boland, and Lauret [25] model, also known as BRL, is adapted by adding the parameter 174 

KCSI to the equation. This parameter is defined as the ratio between GHI and the clear sky irradiance (CSI) obtained 175 

from the Solis model [26]. The authors define two models, the STARKE1 model for Australian data and the 176 

STARKE2 model parameterized for several sites in Brazil. Equation 3 presents the adopted model in this work. 177 

 178 

 𝑘𝑑
𝑆𝑇𝐴𝑅𝐾𝐸2 =

{
 
 

 
 

1

[1 + exp (𝛽0 + 𝛽1𝑘𝑡 + 𝛽2𝐻𝑆𝐴 + 𝛽3𝛼 + 𝛽4𝐾𝑡 + 𝛽5𝜓 + 𝛽6
𝐶𝑆𝐼

277,78
)]
                   , 𝐾𝐶𝑆𝐼 < 1,05

1

[1 + exp (𝛽7 + 𝛽8𝑘𝑡 + 𝛽9𝐻𝑆𝐴 + 𝛽10𝛼 + 𝛽11𝐾𝑡 + 𝛽12𝜓 + 𝛽13
𝐶𝑆𝐼

277,78
 )]
, 𝐾𝐶𝑆𝐼 ≥ 1,05 ; 𝑘𝑡 > 0,65

   (3) 

 179 

The KCSI and kt limits, presented by the STARKE2 model, are associated with over-irradiance events. In their 180 

subsequent work, Starke et al. [27] changed the limits of kt, establishing the boundaries as follows: KCSI must be 181 

equal to or greater than 1.05, and kt should exceed 0.75. Additionally, the authors incorporate an hourly index into 182 

the model as Yang [23], which is the hourly clearness index (kt,h) and adjust the model for different types of 183 

climates. The STARKE3 model can be observed in Equation 4. 184 

 185 

 𝑘𝑑
𝑆𝑇𝐴𝑅𝐾𝐸3 =

{
 
 

 
 

1

[1 + exp (𝛽8 + 𝛽9𝑘𝑡 + 𝛽10𝐻𝑆𝐴 + 𝛽11𝛼 + 𝛽12𝐾𝑡 + 𝛽13𝜓 + 𝛽14
𝐶𝑆𝐼

277,78
+ 𝛽15𝑘𝑡,ℎ)]

    , 𝐾𝐶𝑆𝐼 < 1,05

1

[1 + exp (𝛽0 + 𝛽1𝑘𝑡 + 𝛽2𝐻𝑆𝐴 + 𝛽3𝛼 + 𝛽4𝐾𝑡 + 𝛽5𝜓 + 𝛽6
𝐶𝑆𝐼

277,78
+ 𝛽7𝑘𝑡,ℎ)]

, 𝐾𝐶𝑆𝐼 ≥ 1,05 𝑒 𝑘𝑡 > 0,75

    (4) 

 186 

The present study selected some hourly and sub-hourly models for GHI separation. The Erbs et al. [28] model 187 

was selected because it is easy to apply and widely used in softwares and in literature. This model was adopted as 188 

a baseline for comparison with more elaborate and complex models to assess whether the greater complexity in 189 

modeling diffuse and direct radiation can lead to gains in estimating PV generation. In addition, the hourly models 190 

of Skartveit et al. [29] and DIRINT [30] were adopted due to their good results in a location with a similar climate 191 

to the region of this work, BSh [31], as well as the ENGERER2, STARKE2, STARKE3 and YANG4 models 192 

designed at the 1-minute resolution. 193 

2.1.2. Transposition 194 

The information on global horizontal irradiance, direct normal irradiance and diffuse irradiance allows the 195 

estimation of global irradiance on the inclined plane. The global tilted irradiance (GTI) can be estimated from the 196 

sum of the direct and diffuse irradiance incident on the inclined plane, where the latter has two broad sources, 197 

namely, the diffuse irradiance from the sky dome and from the ground, as seen by the PV array. The GTI is thus 198 

calculated by the expression: 199 

 200 

 𝐺𝑇𝐼 = 𝐷𝑁𝐼 ∗ cos(𝐴𝑂𝐼) + 𝐷𝐻𝐼 ∗ 𝑆𝑉𝐹 + 𝑅𝐻𝐼 ∗ 𝐺𝑉𝐹 (5) 

 201 

The direct irradiance incident on the tilted plane is obtained from a simple geometric transformation, where the 202 

direct normal irradiance (DNI) component is multiplied by the cosine of the incidence angle (AOI). The sky-dome 203 

diffuse portion is obtained by the product of diffuse horizontal irradiance (DHI) and the sky view factor (SVF). 204 

The diffuse irradiance reflected by the ground that is seen by PV array can be obtained by the reflected horizontal 205 

irradiance (RHI) multiplied by the ground view factor (GVF). The RHI is the product of global horizontal 206 

irradiance (GHI) and the ground reflectance (ρg), also called albedo. 207 

Among the three components in the calculation of GTI, excluding complex surroundings leading to ad-hoc 208 

reflections, the sky-dome diffuse irradiance is typically the most difficult to compute because it strongly depends 209 



on the cloudiness and clearness conditions of the atmosphere [32]. Several authors have studied this component 210 

from different approaches, from isotropic models that consider an homogeneous isotropic diffuse radiance 211 

distribution in the sky [33], to more complex and elaborated models that treat the circumsolar diffuse and/or the 212 

horizon brightness in more detail, called anisotropic models [34]. All these models evaluate the sky view factor 213 

(SVF) between the collecting surface and the visible part of the sky.  214 

Historically, one of the pioneers and most widespread work in the literature is the isotropic model proposed by 215 

Liu and Jordan [35] with the sky diffuse irradiance incident on the sloping surface being given by DHI corrected 216 

by a sky view factor, represented by (1 + cos β)/2, where β is the inclination angle of the tilted surface. Koronakis 217 

[36] proposes a correction in Liu and Jordan's sky view factor, correcting the SVF to (2 + cos β)/3, in order to 218 

increase the DHI contribution to the tilted irradiance, increasing the estimation of the diffuse tilted irradiance (DTI) 219 

compared to LJ’s isotropic model. Tian et al. [37] also proposed a change in SVF corresponding to (1 – β/180), 220 

with β in degrees. In Badescu [33], a 3D approach is performed and compared to the isotropic model of Liu and 221 

Jordan [35], showing that Badescu's model estimation with SVF of (3 + cos 2β)/4 was slightly more accurate for 222 

low slope surfaces at high latitudes.  223 

The Hay and Davies [34] model integrates isotropic diffuse radiation with circumsolar radiation resulting from 224 

solar radiation scattering concentrated within the solar disk, incorporating the anisotropy index (FHD). Temps and 225 

Coulson [38] introduced a correction factor for isotropic diffuse radiation to address horizon brightness, later 226 

modified by Klucher [39] into a modulating function (F) for a comprehensive “all sky” model. Reindl et al. [40] 227 

enhanced the Hay and Davies model by introducing a horizon brightening term with a different modulating factor 228 

approach, leading to the HDKR model, combining the previous insights from these contributions, this model 229 

presented great results in the comparison of 26 models performed in Nassar et al. [41].  230 

A different approach with good results [42] for low latitude inclinations (lower than 16°) is the Muneer [43] 231 

model. Muneer [43] proposed a model distinguishing between overcast and non-overcast sky conditions, relating 232 

diffuse radiation at an inclined surface to DHI, with parameters adjusted based on location. Another relevant 233 

anisotropic model is the widely used Perez et al. [44] model, where the isotropic, circumsolar and horizon 234 

brightness diffuse parts are examined in more detail. In this model, the coefficients representing solid angles of 235 

the circumsolar region and empirical sky brightness functions describing circumsolar radiation and horizon 236 

brightness are used. Table 1 provides sky view factors for all transposition models examined in this paper. 237 

 238 

Table 1: Transposition models used to estimate the diffuse irradiance on tilted plane. 239 

CODE TRANSPOSITION MODEL COMMENTS 

LJ 𝑆𝑉𝐹𝐿𝐽 =
1 +𝑐𝑜𝑠 𝛽 

2
  

Ko 𝑆𝑉𝐹𝐾𝑜 =
2 +𝑐𝑜𝑠 𝛽 

3
  

Ba 𝑆𝑉𝐹𝐵𝑎 =
3 +𝑐𝑜𝑠 (2𝛽) 

4
  

Ti 𝑆𝑉𝐹𝑇𝑖 = 1 −
𝛽

180
 𝛽 in degrees 

Klu 𝑆𝑉𝐹𝐾𝑙𝑢 = (
1 +𝑐𝑜𝑠 𝛽 

2
) (1 + 𝐹 (

𝛽

2
) ) ∗ [1 + 𝐹𝐴𝐼 (90 − 𝛼) ] 𝐹 = 1 − (

𝐷𝐻𝐼

𝐺𝐻𝐼
)
2

 

HD 𝑆𝑉𝐹𝐻𝐷 = [(1 − 𝐹𝐻𝐷) (
1 +𝑐𝑜𝑠 𝛽 

2
) + 𝐹𝐻𝐷𝑅𝑏] 𝐹𝐻𝐷 =

𝐷𝑁𝐼

𝐷𝑁𝐼𝑒𝑥𝑡
 𝑎𝑛𝑑 𝑅𝑏 =

𝑐𝑜𝑠 𝐴𝐼 

𝑐𝑜𝑠 (𝜃𝑧) 
 

Mu 𝑆𝑉𝐹𝑀𝑢 = 𝑇𝐹(1 − 𝐹𝐻𝐷) + 𝐹𝐻𝐷𝑅𝑏 
The fitting coefficients of the TF equation 

were considered based on the 

parametrization for the globe. 

Re 𝑆𝑉𝐹𝑅𝑒 = [(1 − 𝐹𝐻𝐷) (
1 +𝑐𝑜𝑠 𝛽 

2
) ∗ (1 + 𝑓 (

𝛽

2
) ) + 𝐹𝐻𝐷𝑅𝑏] 𝑓 = √

𝐷𝑁𝐼 𝑐𝑜𝑠 𝜃𝑧 

𝐺𝐻𝐼
 

Pe 𝑆𝑉𝐹𝑃𝑒 = [(
1 +𝑐𝑜𝑠 𝛽 

2
) (1 − 𝐹1) + 𝐹1

𝑎1
𝑎2
+ 𝐹2 𝑠𝑖𝑛 𝛽 ] Coefficients for all sites parametrization  

 240 

The 9 different techniques highlighted in Table 1 were selected to estimate the amount of solar power incident 241 

on the photovoltaic modules. 242 

 243 

2.2. Photovoltaic Module Models 244 

 245 

Once the radiation incident on the plane of the photovoltaic array is known, the optical, PV cell thermal, and 246 

electrical modeling is calculated considering the meteorological and project design data. In this manner, the 247 

generation of DC power produced by the photovoltaic modules is estimated. 248 



2.2.1. Optical Models 249 

 250 

PV module characteristics are specified for the standard test condition (STC), which consists of 1000 W/m², 251 

spectral composition of light conforming to an air mass of 1.5 (AM1.5), a 25°C module temperature and a flash 252 

emission perpendicular to the module, thus the transmittance of the glass is only evaluated based on the normal 253 

incident irradiance (0°). Modules operate in varying climatic conditions and experience different angles of 254 

incidence throughout the year, and also during the same day, especially when installed in a fixed structure. The 255 

amount of light that passes through the module glass and reaches the cell depends on the angle of incidence (AOI). 256 

The greater the AOI, the lower the transmittance of the glass, thus impacting the incident irradiance on the cell 257 

and the photogenerated current. To estimate this variation, a factor commonly referred to as the incidence angle 258 

modifier (IAM) is introduced to model the PV generation [45]. 259 

Optical models are addressed in literature as IAM losses, or angular losses [46], or reflection losses [47]. 260 

Despite their different names, optical models aim to describe the reduction in irradiance on the cells’ surface 261 

compared to the normal incidence. Mathematical equations based on Fresnel's laws describe the phenomenon of 262 

radiation interaction, considering the angle of refraction (AOR) and are commonly referred to in the literature as 263 

Physical model. Some other approaches consider dimensionless empirical parameterizations, such as the Ashrae 264 

model, which depends on an adjustment parameter in the form of bo, and the Martin-Ruiz model, which considers 265 

the angular factor (ar). These models differ in their associated mathematical formulations, which are shown in 266 

Table 2. 267 

 268 

Table 2: Optical models used to describe reflection losses. 269 

CODE OPTICAL MODEL COMMENTS 

Phys 𝐼𝐴𝑀𝑃ℎ𝑦𝑠 =
𝑒
−(

𝐾𝐿
𝑐𝑜𝑠(𝐴𝑂𝑅) 

)
[1 −

1
2
(
𝑠𝑖𝑛2(𝐴𝑂𝑅 − 𝐴𝑂𝐼)
𝑠𝑖𝑛2(𝐴𝑂𝑅 + 𝐴𝑂𝐼)

+
𝑡𝑎𝑛²(𝐴𝑂𝑅 − 𝐴𝑂𝐼)
𝑡𝑎𝑛2(𝐴𝑂𝑅 + 𝐴𝑂𝐼)

)]

𝑒−(𝐾𝐿) [1 − (
1 − 𝑛
1 + 𝑛

)
2

]

 

Typical values for cSi PV modules 

[48] K=4m-1, n=1.526, L=0.002m, 

 𝐴𝑂𝑅 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
1

𝑛
𝑠𝑖𝑛(𝐴𝑂𝐼))  

   

Ashr 𝐼𝐴𝑀𝐴𝑠ℎ𝑟 = 1− 𝑏0 (
1

𝑐𝑜𝑠𝐴𝑂𝐼
− 1)  bo = 0.05 for crystalline modules 

   

MR 𝐼𝐴𝑀𝑀𝑅 = 1− [
1 − 𝑒

−
𝑐𝑜𝑠 (𝐴𝑂𝐼) 

𝑎𝑟

1 − 𝑒
(−

1
𝑎𝑟
)
]  

ar is the angular factor 

coefficient, ar = 0.016 

 270 

2.2.2. Thermal Models 271 

 272 

Thermal modeling of PV modules aims to determine the thermal behavior of the cells for different weather 273 

conditions. This step of the simulation chain is strongly dependent on solar irradiance, ambient temperature and 274 

wind speed [24]. Some models consider only the first two variables in estimating the temperature of the 275 

photovoltaic cell, disregarding convective heat exchanges, as is the case with the NOCT and Ross et al. [49] 276 

models. Other authors incorporate variables such as electrical efficiency (τ) and optical efficiency (τα), as well as 277 

information obtained from module datasheets, such as temperature coefficients, NOCT (Nominal Operating Cell 278 

Temperature), among other parameters [32].  279 

More sophisticated models adopt a more intricate analysis of thermal exchanges, considering the influence of 280 

ventilation and convection on heat dissipation [50]. The influence of wind on the thermal behavior of cells is 281 

described by heat exchange coefficients (UPV or U) [51, 52] or from the ratio of convective coefficients (hw,NOCT/hw) 282 

where hw corresponds to the forced convection coefficient caused by wind action [53]. Because thermal losses 283 

substantially affect PV module's performance and power production [54], different thermal modeling impacts PV 284 

system simulation. Due to this, all models presented in Table 3 are evaluated in the present work. 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 



Table 3: Thermal models used to describe PV cell temperature. 297 
CODE THERMAL MODELS COMMENTS 

NOCT 𝑇𝑐,𝑁𝑂𝐶𝑇 = 𝑇𝑎 +
𝐺𝑇𝐼

𝐺𝑁𝑂𝐶𝑇
(𝑇𝑁𝑂𝐶𝑇 − 20)   

ross 𝑇𝑐,𝑅𝑂𝑆𝑆 = 𝑇𝑎 + 𝑘 𝐺𝑇𝐼 
Ross thermal conductance 

coefficient for free standing PV 
systems:0.0208 Km²/W 

DB 𝑇𝑐,𝐷𝐵 =
𝑇𝑎 + (𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇) (

𝐺𝑇𝐼
𝐺𝑁𝑂𝐶𝑇

) [1 −
𝜂
𝜏𝛼 (

1 + 𝛾𝑇𝑟𝑒𝑓)]

1 − (𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇) (
𝐺𝑇𝐼
𝐺𝑁𝑂𝐶𝑇

)
𝛾 𝜂
(𝜏𝛼)

 𝜏𝛼 = 0.9 

King97 𝑇𝑚,𝐾𝐼𝑁𝐺97 = 𝑇𝑎 +
𝐺𝑇𝐼

𝐺𝑆𝑇𝐶
[0.0712𝑉𝑤

2 − 2.411𝑉𝑤 + 32.96]  

Sandia 𝑇𝑐,𝑆𝐴𝑁𝐷𝐼𝐴 = 𝑇𝑚 +
𝐺𝑇𝐼

𝐺𝑆𝑇𝐶
𝛥𝑇 𝑇𝑚 = 𝐺𝑇𝐼 ∗𝑒𝑥𝑝 (𝑎 + 𝑏 ∗ 𝑉𝑤)  + 𝑇𝑎 

Mattei 𝑇𝑐,𝑀𝐴𝑇𝑇𝐸𝐼 =
𝑈𝑃𝑉𝑇𝑎 + 𝐺𝑇𝐼(𝜏𝛼 − 𝜂 − 𝛽𝜂𝑇𝑟𝑒𝑓)

𝑈𝑃𝑉 − 𝛽 𝜂 𝐺𝑇𝐼
 𝑈𝑃𝑉 = 26.6 + 2.3 𝑉𝑤 

PVsyst 𝑇𝑐,𝑃𝑉𝑠𝑦𝑠𝑡 = 𝑇𝑎 +
𝛼𝐺𝑇𝐼(1 + 𝜂)

𝑈𝑐 +𝑈𝑣𝑉𝑤
 𝑈𝑐 = 29 ; 𝑈𝑣 = 0 

Faiman 𝑇𝑐,𝐹𝐴𝐼𝑀𝐴𝑁 = 𝑇𝑎 +
𝐺𝑇𝐼

𝑈𝑐 + 𝑈𝑣𝑉𝑤
 𝑈𝑐 = 25 ; 𝑈𝑣 = 6.84  

Skoplaki 𝑇𝑐,𝑆𝐾𝑂𝑃𝐿𝐴𝐾𝐼 =
𝑇𝑎 + (

𝐺𝑇𝐼
𝐺𝑁𝑂𝐶𝑇

)
ℎ𝑤,𝑁𝑂𝐶𝑇
ℎ𝑤

(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇) [1 −
𝜂
𝜏𝛼 (

1 + 𝛽𝑇𝑟𝑒𝑓)]

1 −
𝛽 𝜂
(𝜏𝛼)

(
𝐺𝑇𝐼
𝐺𝑁𝑂𝐶𝑇

)
ℎ𝑤,𝑁𝑂𝐶𝑇
ℎ𝑤

(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇)

 
ℎ𝑤 = 8.91 + 2.0 𝑉𝑤  
ℎ𝑤,𝑁𝑂𝐶𝑇 = 10.91 

 298 

2.2.3. Electrical Models 299 

 300 

Electrical models are divided into two large groups, one based on the equivalent electrical circuit of one or 301 

two diodes, and the second group which uses explicit equations to translate the maximum power point from STC 302 

to any operating condition. 303 

The first group undertakes characteristic curve adjustment to determine a number of electrical parameters (4, 304 

5, or 6) based on model-specific considerations and boundary conditions. De Soto et al. [48] introduced a modified 305 

diode ideality factor ('a') as one of the 5 parameters, commonly found to be less than 1, all extracted under Standard 306 

Test Conditions (STC). Equations derived from three known points alongside the temperature coefficient equation 307 

guide parameter determination, necessitating an iterative process. Once parameters are determined under STC, 308 

authors extrapolate the characteristic curve to any operational condition. In Dobos et al. [55], a sixth parameter, 309 

named Adjustment, is introduced in the electrical generation modeling of PV modules. This parameter adjusts the 310 

temperature coefficients of short-circuit current (αsc) and open-circuit voltage (βoc) provided by manufacturers. 311 

This model is also known as the CEC model (California Energy Commission). Wang et al. [56] evaluated the 6-312 

parameter CEC model and two models from the second group. They observed that the CEC model showed better 313 

accuracy, but both the PVWatts and CEC models adequately described the generation of crystalline silicon 314 

modules. Roberts et al. [11] assessed the performance of three models based on the equivalent electrical circuit 315 

and two models that translate the maximum power point. They found that models in the latter group tended to 316 

overestimate the power output of the photovoltaic system, while those based on the equivalent electrical circuit 317 

tended to underestimate it. The De Soto et al. [48] model demonstrated the highest accuracy in simulating the 318 

photovoltaic system. 319 

While most single-diode models [48, 55] require complex codes that require several iterations to converge, 320 

models that translate the maximum power point require few inputs and have fast computational processing. One 321 

of the models for translating the maximum power point is the PVWatts model used in the software developed by 322 

the National Renewable Energy Laboratory (NREL). The model estimates the output power of the PV array for 323 

different operating conditions, correcting the output power by the temperature. Huld et al. [57] proposed a model 324 

that estimates the output power as a function of operating temperature and irradiance, with some coefficients 325 

determined from indoor and outdoor measurements. Another simple model that performed well for 326 

monocrystalline modules [58] is the ideal diode model proposed by Saloux et al. [59]. This model simplifies by 327 

disregarding the effects of series resistance (Rs) and parallel resistance (Rp). In this paper, this model, which uses 328 

several explicit equations to estimate the output power of the PV array, will be referred to as the Saloux model. In 329 

addition, the De Soto, CEC, Huld and PVWatts models will be tested. 330 

 331 

2.3. Inverter Model 332 

 333 

Direct current (DC) from the PV generator is converted into alternate current (AC) by the inverter. The 334 

PVWatts inverter model, proposed by the National Renewable Energy Laboratory (NREL) [60], is used in the 335 



pvlib library. The California Energy Commission (CEC) conducted analyses that served as the basis for this model, 336 

which describes the inverter efficiency curve as a function of the loading condition, i.e., the ratio between the 337 

actual output power and the nominal power. When the simulated DC power exceeds the inverter's power limit, the 338 

model clips the output power to the nominal value. Those clipping events tend to be more evident in scenarios of 339 

high variability observed in 1-minute time series and in cases of overload, when inverter power is lower than the 340 

peak power capacity of the modules. In addition to the reduction in generation through inverter losses, there are 341 

other losses associated with the operation of photovoltaic systems.  342 

  343 

2.4. Photovoltaic System Losses 344 

 345 

Since models cannot predict certain losses, such as soiling, connections losses, Light Induced Degradation 346 

(LID), mismatch, among many others, the degradation factor or derating factor is typically derived from 347 

estimations or field measurements. They represent the negative impacts on the performance of PV systems [11], 348 

corresponding to a multiplier that reduces the output power. 349 

The losses due to LID were considered by the commonly found value in the literature for similar 350 

polycrystalline modules, consisting of 2%. Cabling was calculated based on technical cable data, corresponding 351 

to 0.71% ohmic losses and soiling was adopted as 1.8% based on technical reports from the PV plant considered 352 

in this work. Although soiling shows seasonal variations, the average value adopted is considered representative 353 

for the plant evaluated [61], and similar annual values of 1.95% were found in the literature for semi-arid climates 354 

[62]. Mismatch losses were estimated following Lorente et al. [63], assuming that fewer than 25% of module 355 

strings operate at peak tolerance. This resulted in a 0.5% reduction in total power. Moreover, instead of considering 356 

the maximum tolerance value indicated in the datasheet, which would correspond to 1.5%, a more conservative 357 

value of ¼ of this tolerance was considered in the module quality reduction factor, equivalent to -0.38%. Overall, 358 

total system losses correspond to 4.6%, and the equivalent reduction factor is 0.954. As some losses may present 359 

high uncertainty depending on the considerations or methodologies adopted to determine their value, a certain 360 

degree of subjectivity is involved, hence a more detailed analysis of their impact on the physical models will be 361 

carried out in section 4.4. 362 

 363 

3. Methodology 364 

 365 

A total of 11,340 simulations were carried out to evaluate energy generation from observational GHI data 366 

using all the combinations of the previous models and data from the first year of operation of a 2.5 MWp PV plant. 367 

Seven distinct GHI separation models, nine transposition models, four reflective losses models derived from the 368 

incidence angle modifier (IAM) models, nine thermal module models, and five electrical models were considered 369 

in the analysis. Figure 2 shows all the models considered. The analysis works with the observational irradiance 370 

data (GHI) as input, and estimates the AC power generation (PAC) of the PV plant. The intermediate variables are 371 

the GTI and the DC power (PDC) injected into the inverter. The model chains used to derive PAC are evaluated 372 

against their corresponding power generation data, without any type of local adjustment or adaptation, using their 373 

originally proposed coefficients. In the case of the segregation models, the coefficients proposed for the BSh 374 

climate or the closest are used. For the ground albedo, a value of 27.72 is used for all transposition models. The 375 

work was done in python language with some models available in the open library pvlib [64]. 376 

 377 

 378 
Figure 2: Process of estimating PV energy generation from horizontal global irradiance with the selected 379 

models highlighted in each step. 380 

 381 



 382 

3.1. Database 383 

 384 

The grid-connected PV system and solar station are located in Petrolina, Pernambuco, in the north-eastern 385 

part of Brazil, within a region known as Sertão. This is the region with the richest solar resource in Brazil, with 386 

average annual GHI resources of the order of 6.5 kWh/m2 day, the region is of great interest for large-scale solar 387 

energy projects [65]. The climate is hot and semi-arid, classified as BSh according to the updated Köppen-Geiger 388 

climate classification [66].  389 

Meteorological variables and electrical data were measured every second and recorded every 1 minute. The 390 

meteorological variables were measured from the Meteorological Station of the Petrolina Solar Energy Reference 391 

Centre (CRESP), located at a latitude of 9.11 ºS, a longitude of 40.44 ºW, and an altitude of 385 m above sea level. 392 

The CRESP solarimetric station is regularly maintained by specialized technicians and is equipped with 3 EKO 393 

pyranometers, model MS-80 (class A according to ISO 9060:2018 standard), with a spectral flat range from 285 394 

nm to 3000 nm and a response time of 0.5s. Two of them are used to measure GHI and one for DHI, the latter 395 

measured with a shadow ball attached to the tracker. The DNI pyrheliometer is also an EKO instrument, model 396 

MS-57 (class A), with the same response time and an extended spectral range from 20 nm to 4000 nm. In the scope 397 

of this work, DHI and DNI were used in the data quality control procedure. The electrical variables of the 2.5 398 

MWp photovoltaic plant are recorded in the SCADA. Both databases operate with synchronized clocks. The grid-399 

connected PV plant is composed of 7600 polycrystalline silicon PV modules of 330 Wp, model CS6U-330P, and 400 

4 inverters of 600 kVA, model SIW700T600-33, 2 inverters operate at 8.6% overload and the other 2 are only 1% 401 

overloaded, more details in Appendix A. All modules are installed on a fixed structure with a 15° tilt. The database 402 

used in this research corresponds to the first year of operation, from November 2018 to October 2019, because 403 

over the following years the natural degradation of the modules could serve as a source of error. 404 

  405 

3.2. Data quality control 406 

 407 

The data quality control (QC) procedure was first applied to the irradiance magnitudes in order to remove 408 

anomalous data. Quality tests proposed by Baseline Surface Radiation Network (BSRN) in addition to physical 409 

and comparative filters discussed in Miranda et al. [67] were used. In the 1 year data period considered in this 410 

work, only 2.89% of all data were discarded. Samples close to sunrise and sunset are not considered for evaluation, 411 

and are removed by a solar elevation filter of 7°, as these samples tend to have more uncertainty due to the cosine 412 

error of the hemispherical instruments. For the CRESP site, these samples represent 0.21% of annual PV generation 413 

and can therefore be excluded due to their small impact on generation and the possibility of inducing relevant 414 

errors. 415 

Apart from the solar radiation filters, the analysis only considered the moments when data was simultaneously 416 

available for all the solarimetric (GHI, DHI and DNI), meteorological (Ta and Vw) and electrical (DC and AC 417 

current and voltage) magnitudes. Days with more than 30% missing data were also discarded, as well as moments 418 

when generation is equal to 0, corresponding to inverter shutdowns. In the literature, these moments typically 419 

correspond to values between 1 and 3.4% of the year [10]. In the PV system evaluated in this work, these shutdown 420 

times correspond to 3.40%, 3.11%, 2.60% and 6.50% for the four inverters. 421 

 422 

3.3. Error and performance metrics 423 

 424 

The statistical indicators considered in this study are commonly employed in the literature [10, 11, 21] to 425 

evaluate and validate models. The selected statistics include Mean Bias Error (MBE), Mean Absolute Error 426 

(MAE), Root Mean Square Error (RMSE), and their normalized counterparts (nMBE, nMAE, and nRMSE). The 427 

first indicates how much the model underestimates or overestimates the measurement as stated at Equation 6 and 428 

7, the second provides an average magnitude of the error based on the absolute differences (Equation 8 and 9), 429 

while the RMSE and nRMSE provide information on the error dispersions, where larger errors have greater 430 

significance due to the quadratic factor (Equation 10 and 11).  431 

 432 
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 433 

Where N is the amount of data, xsim, xmeas and x̄meas are respectively the simulated, measured and average measured 434 

values. 435 

Additionally, a skill score known as Taylor's skill score (SS4) is incorporated, which involves the correlation 436 

(R) and the ratio of the estimated standard deviation (σsim) to the observed standard deviation (σmeas) [68], as stated 437 

at Equation 12. These metrics play a crucial role in quantifying the performance and accuracy of models in various 438 

scientific domains, providing a comprehensive assessment of the agreement between modelled and observed 439 

values. 440 

 441 

 𝑆𝑆4 =
(1 + 𝑅)4

4[(𝜎𝑠𝑖𝑚/𝜎𝑚𝑒𝑎𝑠) + 1/(𝜎𝑠𝑖𝑚/𝜎𝑚𝑒𝑎𝑠)]²  
 (12) 

 442 

As discussed by Mermoud and Lejeune [69], for simulations of PV systems, parameters provided by 443 

manufacturers under Standard Test Conditions (STC) may only be partly representative of real operation, leading 444 

to errors in simulated production. However, these errors are linked to parameter uncertainties rather than the 445 

model's quality. In such cases, bias (MBE or nMBE) may be significant, but if the model is reliable, the error 446 

distribution represented by RMSE should remain low. Similarly, uncertainties associated with sensor 447 

measurements can impact model bias in radiation modeling. Nevertheless, models exhibiting lower nRMSE values 448 

demonstrate a greater capacity to describe the evaluated variable. In this context, nRMSE stands out as the 449 

preferred indicator for comparing the conducted simulations. 450 

4. Results and Discussions 451 

 452 

As stated before, a total of 11,340 simulations were carried out from 7 GHI separation models, 9 transposition 453 

models, 4 IAM scenarios, 9 PV thermal models and 5 electrical models. Each simulation aims to estimate the 454 

power generation of the 2.5 MWp plant. In this section, the error distribution and accuracy range of all the 455 

simulations is discussed, then the best sets of models are examined. Finally, the results regarding the impact that 456 

the radiation models have had on the PV modeling, as well as the effect of varying the derating factor has on the 457 

simulation of the PV plants, are discussed. 458 

 459 

4.1. Model accuracy range and distributions 460 

 461 

The variation in the accuracy of all simulations is shown in Figure 3 for the relative metrics and the skill score. 462 

The range and empirical distribution (quartiles) of each model's statistical indicators (grouped into the five 463 

categories of model’s type) are obtained from all possible simulations using the given model. The first (Q1) and 464 

third (Q3) quartiles are shown in each box of the boxplot, with the median indicated by the red line. The whiskers 465 

extend from the box to the farthest data point lying within 1.5x the inter-quartile range (difference between Q1 and 466 

Q3) from the box. The furthest circles are called fliers and go beyond the end of the whiskers.  For example, the 467 

ERBS model (separation model) has nRMSE values ranging from over 12.5% to almost 16.7%, which means that 468 

all the model chains that separate the global horizontal by the ERBS model have errors between those values and 469 

Q1 and Q3 concentrated below 14%. 470 

 471 



 472 
Figure 3: Accuracy distribution of each model for all possible model chains as a function of the statistical 473 

indicators nMBE, nMAE, nRMSE and SS4. Decomposition models are shown in light green, transposition 474 

models in dark green, IAM in purple, thermal models in dark blue and electrical models in light blue. 475 

 476 

Based on Figure 3, it can be seen that the variation in nMBE of all the models is concentrated between -10% 477 

and 10%, with medians close to 0%. Klucher's anisotropic model, and Ross and Faiman's thermal models exhibited 478 

consistent overestimates, with positive values in the median and smaller variations between Q1 and Q3. The same 479 

behavior is observed for the Ross model in Deville et al. [9]. The most critical steps in 1-min modeling are given 480 

by the transposition models, thermal modeling and electrical models. Among all models, the Tian (ti) transposition 481 

model, the NOCT thermal model and the Saloux electrical model show the greatest variation in bias, corresponding 482 

to -10% to 10%, exhibiting greater dispersion in the distribution and consequently less consistency in modeling 483 

PV generation. The poor performance of these models is also confirmed for nMAE, nRMSE and SS4, with the 484 

highest errors associated with Q1 and Q3. 485 

The minimum and maximum values found for the nMAE correspond to 6.3% and 12.6%, respectively, 486 

showing a high variation in the error associated with the selection of the models. In terms of nRMSE, the variation 487 

corresponds to 4.4%, with the maximum difference corresponding to 16.9% obtained by the YANG4 with tian 488 

model plus Ashrae, NOCT and Saloux models. The minimum value of nRMSE corresponds to 12.54% and was 489 

obtained by the sets of models that include the CEC and desoto electrical models, the King97 and Sandia thermal 490 



models, the Reindl (Re) and Perez (pe) transposition models, the Martin-Ruiz optical model and the STARKE2 491 

GHI separation technique. 492 

Furthermore, Figure 3 also shows that some models are generally more consistent depending on the statistical 493 

indicator, for example, the CEC, desoto and pvwatt electrical models were highly consistent with little variation 494 

between the Q1 and Q3 for nMBE, nMAE and nRMSE. In other words, regardless of the models used, these 3 495 

models tend to be more consistent with more accurate simulations than the saloux and huld electrical models. 496 

Similarly, the ross and faiman thermal models showed smaller differences between Q1 and Q3 in terms of nMBE, 497 

nMAE and nRMSE. However, this result did not imply more accurate simulations, just less variation depending 498 

on the models in the simulation chain. It can be seen, for example, that other thermal models have a median and 499 

P25 below the nRMSE values of the Faiman model, indicating greater accuracy. 500 

In terms of radiation modeling, the separation models do not vary the PV output so much from one to another, 501 

with very similar variations between P25 and P75. Among all the GHI separation models, STARKE2 with 502 

parameterization for Brazil, designed by [16], had the best quartile values for nMAE, nRMSE and SS4. Regarding 503 

the transposition models, the first 4 models (Liu and Jordan, Koronakis, Tian and Badescu) correspond to isotropic 504 

models and showed the worst results in terms of nMAE, nRMSE and SS4. These results are expected due to the 505 

greater simplicity of modeling diffuse radiation in the inclined plane [70], which impacts on the estimate of the 506 

solar resource available in the fixed plane of the PV array. 507 

One of the radiation modeling steps that has the greatest impact on the simulation chain of photovoltaic 508 

systems is the irradiance transposition to the inclined plane [8]. For this reason, the analysis of the separation, 509 

optical, thermal and electrical models is examined in Figure 4 against the transposition models in order to address 510 

with higher detail the minimum results for the nMAE and nRMSE, and the maximum values of SS4 achieved for 511 

each of the combinations. The variation in the accuracy of the groups of models indicates that the best results are 512 

obtained by the anisotropic transposition models Hay and Davies (hd), Muneer (mu), Perez (pe) and Reindl (re), 513 

obtaining brighter colors, thus demonstrating a greater ability to estimate PV generation. 514 

 515 



 516 
Figure 4: Distribution of the best results for nMAE, nRMSE and SS4 evaluated according to the 517 

combination of transposition models with the separation, optical, thermal and electrical models. 518 

 519 

Among the anisotropic models, the Klucher model is the only one that underperforms, with lower statistics 520 

than the other anisotropic models. This is due to the fact that the Klucher modulation function does not exhibit a 521 

high ability to estimate the circumsolar irradiance and the brightness of the horizon in low inclinations at low 522 

latitude locations, tending to overestimate the incident irradiance on the inclined plane [71].  523 

The results shown in Figure 4 indicate that the most significant variations between the best sets of models are 524 

found between the transposition model with the thermal and electrical modeling stage. The variations within the 525 

maximum and minimum of the thermal models and the transposition models range from 6.5% to over 9% in terms 526 

of nMAE, and from 12.6% to over 14% on nRMSE, indicating a variation of over 3.5% in nMAE and over 1.4% 527 

in nRMSE. 528 

In general terms, the models that achieved good results when associated with the hd, pe, re and mu anisotropic 529 

models were the GHI STARKE2 separation models, the Martin-Ruiz optical reflectance model, the thermal 530 

behavior of the Skoplaki, King97, Mattei, Ross and Sandia models, and the CEC and desoto electrical models. The 531 

best results were achieved by using the Perez transposition model. 532 

 533 

 534 

 535 

 536 



4.2. Best set of models 537 

 538 

Figure 5 illustrates the distribution of model performance across the top 1% (best-performing) and bottom 1% 539 

(worst-performing) simulation results based on four statistical metrics (nMBE, nMAE, nRMSE, and SS4). For 540 

each statistical metric, the 113 best and worst combinations have been identified from the 11,340 simulations 541 

considered. A combination is considered “best-performing” when it ranks within the top 1% of results for a given 542 

metric, representing the lowest error for nMAE, nMBE and nRMSE, or highest agreement, in the case of SS4. The 543 

heatmaps display the frequency of each model appearance within these best and worst combinations. Models 544 

highlighted in red denote poor performance as they feature among the worst combinations. In contrast, models that 545 

consistently appear in the top 1% are highlighted in green, reflecting a strong ability to accurately model PV 546 

generation. 547 

 548 

 549 
Figure 5: Frequency of individual models within the top and bottom 1% of 11,340 model combinations, 550 

evaluated by nMBE, nMAE, nRMSE, and SS4 metrics. 551 

 552 

Figure 5 shows that the STARKE2 model is the GHI separation model that is most present among the best 553 

simulations, corresponding to 50% of the combinations with best nRMSE results, 64% for SS4 and 39% for nMAE, 554 

suggesting that its application with transposition, optical, thermal and electrical models tend to produce positive 555 

results in terms of nMAE, nRMSE and SS4. Subsequently, the DIRINT and SKARTVEIT models show high 556 

proportions in the best simulations. The three models stand out as the ones least present among the worst sets of 557 

models analyzed. 558 

In terms of the transposition of radiation onto the inclined plane, as seen in Figure 4 and now described in 559 

terms of the percentage of the best and worst combinations, isotropic models tend to be absent from the best PV 560 

generation simulations in terms of the nMAE, nRMSE and SS4 metrics, demonstrating a low ability to estimate 561 

diffuse radiation on the inclined plane. In addition, it can be seen that the anisotropic models, with the exception 562 

of the Klucher model, tend to be among the best simulations conducted, this fact may be linked to the way the 563 

irradiance from the horizon brightness and circumsolar is estimated by Klucher model, the inferior performance 564 

of this anisotropic models is also recorded in Loutzenhiser et al. [72], Yang et al. [71] and Yang et al. [73]. 565 

Furthermore, the Tian model showed poor performance for the low slope evaluated (15°N), being the most frequent 566 

model present in the worst simulations. Arias-Rosales and LeDuc [74] compared the Tian, Badescu and Liu-Jordan 567 

sky view factors and observed that Tian tends to perform less than Liu-Jordan. 568 

With regard to optical models, the model proposed by Martin and Ruiz [47] showed the best results, being 569 

present in more than half of the cases for the nMAE, nRMSE and SS4 statistics (55%, 53% and 48%, respectively). 570 

For thermal models, the Sandia model performed better in terms of nRMSE and SS4, being included in more than 571 

2/5 of the combinations for those indicators, subsequently Mattei, Ross, and King97 also presented consistent 572 

results for the best simulations.  573 

For electrical models, the CEC and De Soto single-diode models showed the best overall results, being green 574 

in all the indicators and scenarios (Best 1% and Worst 1%). Similar results of the high performance of these models 575 

were found in the comparative evaluation of several groups of models in the simulation of photovoltaic systems 576 



in Roberts et al. [11]. Also, in the comparative analysis of electrical models by Wang et al. [56], the authors found 577 

that for polycrystalline silicon modules the CEC model when compared to the PVWatt model in the temporal 578 

resolution of 1 min presents a greater capacity to describe the electrical output characteristics of the modules with 579 

better nMBE and nRMSE results. In general terms, the CEC and De Soto models are better at estimating the output 580 

power effectively, as they calculate the parameters of the equivalent circuit for each operating condition (GTI and 581 

Tmod) and consequently calculate the point of maximum power. Small variations are observed between the 582 

performance of the CEC model and the DeSoto model, because the difference between both models lies in the 583 

addition of the sixth parameter in the CEC model, the Adjust that corrects the temperature coefficients of the short-584 

circuit current and the open-circuit voltage. This parameter can be obtained from the System Advisor Model library 585 

[75]. 586 

 587 

4.3. Comparative evaluation of specific cases 588 

 589 

A wide range of possibilities for simulating PV system generation can be achieved from all the physical 590 

models selected. In Roberts et al. [11], one of the sets of models that showed the best estimate of PV generation 591 

was the DIRINT separation model with the Koronakis (ko) transposition model, no optical model, and the DeSoto 592 

electrical model coupled with the skoplaki thermal model. This combination achieved the best nRMSE results of 593 

around 15%. In Mayer and Gróf [10], the sets of models that showed excellent mean absolute error in simulating 594 

PV generation were composed of the Starke separation model, Mattei temperature, PVWatt electrical (referred by 595 

the authors as Evans, due to being one of the pioneers to approach output power following this method [76], Liu-596 

Jordan or Perez transposition model and Martin-Ruiz or physical IAM model. 597 

Table 4 shows the statistical metrics and the generation of each case. The best and worst results achieved in 598 

this work in terms of nMAE and nRMSE, as well as cases from selected papers, and also scenarios that consider 599 

the best models obtained individually according to the state of the art (Best individually 1 and 2) and a case of 600 

simplified models that are easy to apply are evaluated and presented in Table 4. 601 

 602 

Table 4: Statistical metrics and total photovoltaic generation for specific modeling cases. 603 

CASES 
SET OF MODELS nMAE 

(%) 

nMBE 

(%) 

nRMSE 

(%) 

SS4 

(%) 

EPV 

(GWh) Sep. Transp. Optical Thermal Elect. 

Measured - - - - - - - - - 2,136 

Best nMAE Starke2 Muneer MR Mattei DeSoto 6,4 0,1 12,7 95,80 2,139 

Best nRMSE Starke2 Perez MR Sandia DeSoto 6,5 -1,2 12,5 95,80 2,112 

Worst nMAE and 

nRMSE 
Yang4  Tian Ashrae NOCT saloux 12,6 -10,0 16,9 94,99 1,923 

Roberts et al. (2017) DIRINT Ko None Skoplaki DeSoto 7,5 -1,5 13,1 95,37 2,104 

Mayer and Gróf (2021) 1 Starke2 Perez MR Mattei PVwatt 6,5 0,2 12,7 95,77 2,140 

Mayer and Gróf (2021) 2 Starke2 LJ Phys Mattei PVwatt 7,0 -0,5 12,9 95,60 2,126 

Best individually 1 Yang4  Perez Phys Mattei CEC 6,5 0,1 12,7 95,75 2,138 

Best individually 2 Starke3 Perez Phys Mattei CEC 6,5 0,1 12,7 95,78 2,139 

Simplified 1 ERBS LJ None NOCT PVwatt 8,3 -2,8 13,5 95,12 2,076 

Simplified 2 ERBS LJ None Ross Huld 9,9 -6,2 14,5 95,19 2,003 

 604 

Table 4 shows that the first two combinations with the best nMAE and nRMSE results, respectively, provide 605 

results well in line with the measured generation and PR, especially the combination with the best nMAE, which 606 

shows a 3MWh difference (corresponding to a nMBE overestimate of 0.1%) and an overall PR very similar to the 607 

measured one. It can also be seen that the best sets of models found by Roberts et al. [11] and Mayer and Gróf 608 

[10] achieve high performance results, also demonstrating good accuracy in estimating PV generation. 609 

Furthermore, Table 4 shows that if the project designer decides to adopt models that stand out individually in 610 

the literature, i.e., assessing exclusively the separation models [21], or only the transposition models and the other 611 

stages of photovoltaic modeling, the errors found will be close to the best scenarios assessed here. The individually 612 

best scenarios correspond to models also adopted in Mayer and Gróf [10], with the exception of the separation 613 

models, corresponding to the Yang4 [23] and Starke3 [27] separation models for version 1 and version 2, the Perez 614 

model [73], the physical optical model, the Mattei thermal model (according to [77]) and the CEC electrical model 615 

due to its high performance, which is similar to DeSoto but with a slight improvement in nRMSE, as observed in 616 

Deville et al. [9]. 617 

Another important factor to mention is the additional errors that can be found if the simulation is conducted 618 

with simplified models that do not fit properly in the conditions evaluated, for example, simplified version 2 adopts 619 



the Badescu model, which was designed and evaluated in high-altitude locations, but for semi-arid climatic 620 

conditions at a low-latitude site it presents a low capacity to describe the diffuse radiation on the inclined plane, 621 

tending to strongly underestimate the irradiance that falls on the PV panels. When associated with the NOCT 622 

thermal model, which overestimates the thermal losses of the modules [78], the generation estimated based on this 623 

set of models will tend to strongly underestimate the measurement, as seen in Table 4 and also shown in Figure 6, 624 

underestimating in 6,2%. 625 

Figure 6 shows the simulated versus measured graph for all the selected scenarios. 626 

 627 

 

(a) Best nMAE 

 

(b) Best nRMSE 

 

(c) Best SS4 

 

(d) Worst nMAE and nRMSE (e) Worst SS4 

 

(f) Roberts et al. (2018) 

 

 

(g) Mayer and Gróf (2021) 1 

 

(h) Mayer and Gróf (2021) 2 

 

(i) Best Individually 1 

 

(j) Best Individually 2 

 

(k) Simplified 1 

 

(l) Simplified 2 

Figure 6: Simulated versus measured data for different scenarios. 628 

  629 

Figure 6 shows that the adoption of accurate models according to the literature (Figures 6.i and Figure 6.j) 630 

results in accurate simulations with a high degree of reliability, featuring small differences in the statistics when 631 

compared to the simulations that best fit (Figure 6.a, 6.b and 6.c) the conditions evaluated. When comparing 632 

scenarios 1 and 2 of Mayer and Gróf [10] (Figures 6.g and 6.h) the use of an isotropic model tends to underestimate 633 

generation, adding error to the results. 634 



It can also be seen that depending on the models selected, variations in nMAE of up to 6.2% (6.4% for the 635 

best nMAE and 12.6% for the worst nMAE) can be obtained, which means that the best model chains have 49% 636 

less error compared to the worst-performing ones. About nRMSE, the absolute variation found was 4.4% (12.5% 637 

for the best nRMSE and 16.9% for the worst nRMSE), corresponding to a relative difference of 26%. 638 

Among the simplified cases (Figure 6.k and 6.l), it can be seen that adopting models that are easy to apply can 639 

lead to greater errors in estimating generation, especially when adopting isotropic models that tend to 640 

underestimate irradiance on the inclined plane (ba) associated with thermal models (NOCT) that overestimate the 641 

temperature of the modules, which increases losses and favors underestimating generation. 642 

 643 

4.4. Impact of the derating factor on model accuracy distribution 644 

 645 

The effect of the derating factor on the physical models was assessed by varying the loss coefficient from 646 

0.914 to 0.994 and observing the average value of the statistic for all simulations using a selected model, i.e. if the 647 

nMAE of a model for the derating factor 0.994 corresponds to 8%, it indicates that the average nMAE of all 648 

simulations utilizing this model, when assembled, is 8%. Figure 7 shows all the average values for nMAE, nMBE, 649 

nRMSE and SS4. Yellowish colors indicate better average values, and greenish colors indicate worse results. 650 

 651 
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 698 
Figure 7: Impact of derating factors on average simulation values for each model. 699 

 700 

Figure 7 shows that regardless of the loss values adopted, the CEC, desoto and pvwatt models tend to present 701 

more accurate results, with better accuracy for values close to 0.964 (approximately 3.6% losses). Furthermore, 702 

among the optical models, the best results in the scenario without IAM losses are offset by approximately 1%, 703 

demonstrating that the optical models produce losses of this magnitude. 704 

Additionally, Figure 7 depicts that the top-performing models discussed in section 4.2 maintain a consistent 705 

performance profile regardless of the derating factor value, except for the thermal models, which display differing 706 

performances depending on the adopted derating factors. 707 
 708 



5. Conclusions and limitations 709 

 710 

This study analyzes different models and models chains used in the simulation of grid-connected PV systems, 711 

evaluating the PV generation from 11,340 model combinations consisting of seven GHI direct-diffuse separation 712 

models, nine transposition models to tilted plane, four optical models (IAM), nine thermal models and five 713 

electrical models using high-resolution (1 minute) data from a 2.5 MWp photovoltaic plant installed in the 714 

Brazilian northeast semi-arid region. The present study is the first detailed work for PV systems simulation in this 715 

relevant climate zone of Brazil (BSh) that evaluates all the groups of models required for PV power generation 716 

estimation under all-sky conditions. 717 

The most critical steps observed correspond to the groups of transposition models, thermal models and 718 

electrical models. Among the best simulations, the anisotropic transposition models of Hay and Davies (HD), 719 

Reindl (Re), Muneer (Mu) and Perez (Pe) were the most prevalent models among the best combinations evaluated, 720 

with a special emphasis on Perez's diffuse transposition model. Among the thermal models, Sandia, King97, Mattei 721 

and Ross models were the most present in the 1% of the best combinations evaluated. Regarding the electrical 722 

models, the one-diode, CEC and De Soto models were the best models applied, with slight differences between 723 

the two. The PVwatt model also showed satisfactory results when compared to the other maximum power point 724 

translation models. 725 

Significant increases in simulation error at high temporal resolution can be observed when erroneous or 726 

oversimplified physical models are used for PV generation modeling. Relative differences in nMAE of 49% and 727 

nRMSE of 26% were evidenced, indicating the importance of selecting appropriate models. In situations where 728 

data is unavailable to validate and identify the best models, it is advised to adopt the best models for the desired 729 

climate and system technology based on the literature, which is demonstrated in this work to be a good choice, 730 

almost achieving the optimal performance of the best combinations. Furthermore, apart from the thermal models, 731 

overestimating or underestimating the derating factor does not affect the performance profile of the models, 732 

showing that the best models tend to describe better the physical variables evaluated, demonstrating greater ability 733 

in modeling PV generation. 734 

It is worth noting that the choice of separation models showed a low impact on the end-to-end modeling of 735 

PV generation in the present study. One possible hypothesis explaining this result is based on the characteristics 736 

of the evaluated PV plant that corresponds to a fixed system with low inclination. Since the system is fixed, the 737 

imbalance of these variables is reflected onto the inclined plane, resulting in minimal variation in POA irradiance. 738 

However, if the PV facility were a tracking solar plant, the separation models would tend to have a more significant 739 

impact, as POA irradiance is strongly influenced by DNI, necessitating accurate simulation of this variable. In this 740 

sense, in future studies, it’s essential to expand the analysis to solar PV tracker systems under hot semi-arid climate 741 

(BSh) conditions, and compare with the fixed-plane situation.  742 
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Appendix A 747 
 748 
The PV plant is connected to Celpe's distribution grid with 2.5 MWp of DC capacity. The characteristics of 749 

the PV modules, inverters, PCS and other characteristics are shown in Table A.1. 750 
 751 

Table A.1: Characteristics of the PV module, array and system. 752 
GENERAL INFORMATION 

Latitude 9.11 °S PV Module CS6U-330P (CSI) Inverter Model SIW700-T600-33 (WEG) 

Longitude 40.44 °W Rated power 330 Wp Rated Power 600 kW 

Altitude 385 m Number of modules 7600 Number of inverters 4 
Structure / Tilted 15°N Fixed Efficiency at STC 16.97% Modules per inv. 1976 and 1824 

DC Capacity 2508 kWp NOCT 45°C Inverter overload 8.6% and 0.3% 

AC Capacity 2400 kW Temperature Coeff. (Pmáx) -0.41%/°C PCS 2 
Area 45 ha PV technology poli-Si Inverters per PCS 2 
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