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Abstract

A statistical model based on Tarpley’s original solar ifegidn model is proposed and evaluated using data from seswrground
stations in Uruguay. The model estimates hourly globalrsolfadiation on a horizontal surface using GOES-East k@é@hages.
We show that the introduction of a simple brightness depecel the model parameters drastically improves the acguwfthe
estimates. The implementations of the original and the avgd models are explained in detail. For each case, the ptessrare
adjusted using controlled quality solar irradiation datd a comprehensive performance analysis, on an hourly athdbdsis,
is carried out using data from independent measuremesst sliee relative RMS deviations for the estimates of the tnigss-
dependent model are 7.1% for the daily estimates and 14.0%ddourly estimates, relative to the mean of the measureme
This represents a reduction of approximately 45% (daily) 2596 (hourly) in the relative RMS deviations of the originabdel.
The improved model provides a good balance between sirtypfiod accuracy.

Keywords: solar irradiation, statistical model, remote sensing, GQktellite images.

1. Introduction tween satellite information and simultaneous ground measu
ments for the same location in order to adjust their pararsete
Reliable solar resource estimates are essential to deggn s Most modern models are of a hybrid nature, i.e. they have a
tems for conversion of solar energy into useful (thermaicel physical basis and include some adjustable parametersngmo
trical) energy. Information on an hourly basis is needed tdhe most popular satellite-based radiation models areteYS
estimate the output of solar energy conversion devices or tg1odel (Perez, 2002) and the Heliosat family models. In par-
properly assess their performance. Knowledge about the sdicular, the Heliosat 2 model (Hammer, 2003, Rigollier, 2D0
lar resource spatial and temporal distribution is also irrgpu IS widely documented. Both models take advantage of highly
for agricultural planning and research. At most locatioms i tuned clear sky models and cloud cover is considered by the
Uruguay, reliable solar irradiation ground data are notiable ~ use of a cloud index derived from satellite images. Region-
as this variable is not Current]y included among the routiee Specific modifications of Heliosat 2 empirical relationsb'Ep
teorological measurements done by the meteorologicakserv tween the cloud index and the clear sky index have been pro-
Schemes based on ground measurements and interpolatiBfsed in (Zarzalejo et al., 2009), reaching better resulisrms
techniques provide limited accuracy, even over relatigagall of irradiation estimates performance. For recent reviews o
distances, due to highly variable atmospheric conditi@is- satellite-based solar radiation models see f{8tet al., 2010,
ple satellite-based models can provide better accuracy fd¢hap. 4), or (Polo etal., 2008).
hourly irradiation than ground measurement interpolatibn Tarpley’s original model is one of the earliest satelliteséd
fact, from an end-user perspective, it is preferable to ogly statistical irradiation models. In the original proposEdipley,
satellite-based hourly estimates than using ground data fr 1979), applied to the Great Plains area in the U.S., the oditio
stations located more than 30 km away of the target poine@er cloudy vs. clear-sky squared brightness counts was used to i
etal., 1997). troduce cloudiness information in the model and this result
Satellite-based solar resource models used to be classifiedin a significant bias error. A second version, based on the dif
two categories: statistical and physical (Noia et al., 2988  ference of the squared brightness counts, significantiyaed
Physical models attempt to describe the radiative transfer  the bias problem (Justus et al., 1986). In this work, we refer
cess in the earth—atmosphere system and rely on informatido this last model as the JPT model (for Justus, Paris, Tarp-
about the current composition and state of the atmospher&y). In spite of its simplicity and reasonable performaite
which may not be available for all locations. However, thesesnow-free areas, this model seems to have been forgottdés and
models can be used to estimate solar irradiation in regionsow considered somewhat outdated. In spite of this, local im
where no ground radiation measurements are available. ©n tiplementations and evaluations of the JPT model for the South
other hand, statistical models rely on regression teclasitpe- American plains have been recently reported. In (Righimi an
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Barrera, 2008) daily solar irradiation was estimated fot p&  2.1. Mean Brightness determination

Argentina and a relative RMS of 17.3% agai_nst ground data The values 0B, and By must be computed for every hourly
was reported. In Alonso et al. (2011), preliminary results f jnterval and site. Eects due to cloud dynamics within the hour
the first implementation of Tarpley’s model in Uruguay show agnq instability in the satellite sensor are reduced by ayera
relative RMS of 12% against independent ground data, also Ofhg the brightness counts over a small spatial neighbotwthoo
a daily basis. In this work, we briefly review this last imple- 4 5 given position. We use cells of 10 min10 min latitude-
mentation and propose a new version of the JPT model Whicfbngitude intervals centered at the latitude and longitigde)
significantly improves the accuracy of the estimates whi& p  of the location of interest. These cells represent a grouea a
serving the simple character of the original model. We showy apout 16 kmx 19 km. For each cell, the mean brightn@ss
that this improved model, which we call BD-JPT due its bright i5 calculated as the simple average of all pixels in the il u
ness dependence, can provide a very good agreement with indg | the available images within the hour (i.e., imagethia
pendent ground measurements when its parameters argylocafime interval 10:30 to 11:29 are assigned the to hour labgl 11
derived. This model may be used on a regional scale, includrpe time label in the data are in local Standard Time (UTC-3).
ing the whole of Uruguay_, the eastern part of Argentina aed th |, this way, a mean brightne®in(¢, ) is obtained for each
southeren states of Brasil. daytime hour and location. In Fig. 1 we show the distribution
This article is organized as follows. Section 2 describes th of the B, values obtained from the images for three particular
JPT model in detail and existing performance reports are dijocations. TheB, for other locations are similarly distributed.
cussed. The solar irradiation ground data and satellitg@®a e shall now address the estimation of the clear-sky bright-
used in this work are described in Section 3. In Section 4, th@essB,. Following Tarpley (1979), the time dependence of the

local implementation of this model to the target area caer®id B, values for a cell atd, ) can be parameterized as
in this work is summarized and in Section 5, an improved ver-

sion of the model is derived, explained and evaluated. Rerfo Bo(g,¥) = Alg.¢)+ B¢, y)cos, +
mance indicators for both models are discussed in Sectiin 5. C(¢, v) sind, cosy + 2
Finally, our conclusions are presented in Section 6. D(¢, ) sinf, cog y

wherey is the azimuth angle between the Sun and satellite
2 TheJPT mode directions for the location of interes_t. The first_two terms [
Eq. (2) account for the changing incident flux with local time
day and location plus a constanfset value. The other two
Following Justus et al. (1986), in the standard JPT modeferms are intended to account for changes in target brightne
hourly global irradiation on a horizontal plane at grouneele  due to surface shadows and anisotropic scattering. Once the
|, is parameterized as {A, B, C, D} parameters are determined for each site, Eq. (2) is
used to obtain the characteristic clear-sky brightnesa toven
time and location. Note that these parameters are sitefispec
and do not depend on the hourly atmospheric conditions, but
only on the long-term average.
where | is expressed in kin® and Is. = 4921 kJm? is the The codficients in Eq. (2) should be adjusted using images
hourly integral of the Solar Constant. The factes/()* ac-  for clear-sky hours only. We follow the heuristic iterative
counts for the variation of the Sun-Earth distamo@ssumed procedure originally proposed in Tarpley (1979), whictefit
constant within a day) with respect to its mean valgi@nd it out data for hours contaminated with clouds or with ifisu
depends on the day number The solar zenith anglé, is  cient scene illumination. We start by filtering out cells fwit
the angle formed by the Sun-observer direction with thellocacorruptedB,, values or with cos, < 0.1. This eliminates
vertical. It depends on location, day number and local time i early morning or late afternoon hours with high air masses fo
the usual way (Igbal, 1983). The hourly averages of(g@md  which long shadows are likely to occur. Our implementatibn o
its powers are used in Eqg. (1). In this expression, terms witlTarpley’s proposal is described in the following pseud@cod
codficientsa, b andc represent the clear-sky part of the model,
while the last term introduces the cloudiness informatibn 0 For each locationd, y):
tained directly from the satellite counts in the visible chel init B* = 250028 ~ 9.8, co = 1.2, o = std({Bm(di, v)})
andd is a conversion factor from squared brightness counts to BY « {Bm: |Bm— Bl < 07/2}
physical irradiation unitsBy, is the hourly mean brightnessina ;.. (A%, B?,CO, D% « arg min{llB0 — Bo(¢i xpi)llz}
small cell which represents the neighbourhood of a giveadoc ;.. =’O T m ’
tion, andBy is the mean clear-sky brightness for the same time repeat
and location. The presence of clouds increases the refiectio la) — |Bk — Bo(dh, i, A%, BX, CK D")|
wards the satellite radiometer 8g, > By and the cofficientd h m = SOV FL I, E
. . . . o = std({e}), ck = co+ 0.1 x k
in Eq. (1) must be negative. We have normalized the brigltnes K—k+1 (B 1 .
. . - =k+1, {By) « {By": lal < ceow}
counts with a factor of© chosen so that is of order 1 which K ok ~k Mk , " 5
leads to a better conditioned regression problem. (A%, B, C, DY} —arg m|n{||Bm = Bo(gi. i)l }

2
| = |sc(%) cosé)z(a+ bcosez+cco§ez)+d(|3§1_ BS) (1)
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Figure 1: Histogram for mean brightness (normalized cqufus the sites  Figure 2: Values of clear-sky brightne®%, vs. day number, for several day-

coded LB, SA, TT (see Table 1). The vertical lines indicate riedian (dash)  time hours, obtained from Eq. (2) (green curves). The namedlbrightness

and average (dash-ddg), values. countsBy, for each day are shown as blue dots. Satellite data is for Bie R
station, for the whole period indicated in Table 1.

until {BX} = {B&Y)

return {A B,C, D} « {AK Bk CK DX} is large enough to fit a new model. Then, the residuals of the
whole B, set under this model are computed. Those with large
residuals are discarded, and the model is refined by readjust
Eq. (2) with the resulting set. Finally, the total root megoare
(RMS) deviation is computed and if the current model yields a

With these choices foB*, ¢y and ¢, the above procedure
terminates after a few iterations. Notice that the boundhen t
absolute residualg is being reduced after each iteration. This

algorithm requires a first gue& for training and this value o .
might be location dependent. We have chosen the initialevalusma"er RMS deviation than the previously selected bestatiod
the current model is accepted as best model. Repetitioriof th

B* = 9.8 normalized counts after visual inspection of several _ : .
histograms 0By, sets, such as the one shown in Fig. 1, for dif_procedure yields an optimal solution when the number of out-

ferent locations. We have tested the procedure with otHeesa I'%rs 1S I((ejsfs thanhhagglf\ltgiéotalll nu.r’p]ber.of samplefs bT?]e':]SSf.
for B* and found that it is not critical for the determination of CPtained from the algorithm, in terms of both the fi-

the regression values. Furthermore, when the same indtiaév nal model performance anq the resuItB_@vaIues, are similar
B* = 9.8 is used for all the cells of our target region, visual 0 0Se obtained by our implementation of Tarpley’s proce-

inspection shows that reasonable valueHgare obtained for 9"”.9- Since the heuristic proge_:dure described in Tar_pIQVS().
all of them. The result of Tarpley’s algorithm for determtioa is simpler and requires significantly less computatiordre

of By is shown in Fig. 2, where the normalized mean brigh,{_(usually about ten iterations) we use it to obtain Byevalues

ness data for one site (RB, see Table 1) is compared with th%nd consider it validated by our RANSAC implementation.

clear-sky brightnes8, (green curves) obtained from Eg. (2)
for different hours in each day. Notice the weak seasonal de-2- Related work
pendence in th&, values, which are lower in winter than in  In Justus et al. (1986) a set of 7200 coincident satellite
summer. and pyranometer hourly observations for the period August—
Adjusting the parameters defined in Eq. (2) to Byeghourly ~ December 1980 over the U.S. Great Plains was used to deter-
data is basically a problem of model-fitting in the preserfce 0 mine the co#icients in Eq. (1) from multiple regression. They
large number of outliers (i.e., cloud-contaminaBygdata). We  used the adjusted model to generate irradiation estimates f
have validated the above procedure by implementing amalter the continental United States, Mexico and the central pfart o
tive one, based on the well-known Random Sampling Consersouth America, with 2 x 1° resolution. A common perfor-
sus algorithm (RANSAC hereafter) proposed by Fischler andnance indicator is the Root Mean Square deviation (RMS), of-
Bolles (1981). The RANSAC algorithm is suited to solve thisten expressed as a percentaje of the mean of the measurements
kind of problems, but it requires considerably more computa(rRMS). On the comparison with hourly surface data Justus
tional dfort than Tarpley’s proposal. RANSAC is also an it- et al. (1986) report an rRMS of 16.2% of the observed mean.
erative procedure; in each iteration, a set of random sampleOn a daily basis, against a set of 1021 site-days, they report
from the By, set is selected. The number of selected samplean rRMS of 10.8%. Furthermore, this work quotes a compar-
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B ; P ; e Site code | device lat. lon. time period used
ison of th_e same estimates against daily data from four Sites- > s 1B | Kez | 2467 | 5634 | 052010 = L2011
in Argentina with an rRMS of 13.6% or 12.8% for the sin- | saito SA | K&z | -31.27 | -57.89 | 062010 :: 102011
i H H H i | Treintay Tres TT K&z -33.28 | -54.17 | 052010 : 132011

gle site at Pergam_lno, equipped with a thermopile pyranome B o BU | Li-oor |31.06 | 55.60 | 052010 - 120011
ter (Espoz and Brizuela, 1983). Frulla and collaboratoge al | piedras de Afilar | PA | Li-Cor | -34.68 | -55.58 | 052010 :: 102011
i i iai i José Ignacio Jl Li-Cor | -34.85 | -54.74 | 052010 :: 102011

compared daily estimates from the original JPT model, using [2=° /9860 | 0 | =200 | 2000 | e 052010 - 102011

the codficients adjusted in Justus et al. (1986), with measure-
ments for several locations in Argentina (Frulla et al., 898
and southern Brazil (Frulla et al., 1990). In Argentina, Ii® Table 1: Details of the measurement stations used in thespregork. The
estimates compared to 5322 daily measurements from 13 stilitudeandlongitudeare in decimal degrees.

tions for the 1982-1983 period produced an rRMS of 19.6%.  ww_ ww  ww __sow  ww ww  ew  sw
In Brazil, a similar study compared the same daily JTP esti- @% ]

mates to 4404 site-days from 9 stations for the 1982-1983 pe- . L @ f\é@}

riod and resulted in an rRMS of 20.3%. More recently, Righini % jt\f, §

and Barrera (2008) report a local implementation of the JPT '3) A J\:{\:\)\ -
model in which the cocients in Eq. (1) were derived from %ﬁ = g %

local data. This implementation used images from the GOES- __

8 satellite and data from 5 pyranometric stations in Argenti - Y @’ %%%/

The comparison between daily irradiation estimates andrgfo : el >

=

oW 60W 50W oW

measurements for 715 site-days resulted in an rRMS demiatio =
of 17.3%. These results suggest that theflodients in Eq. (1)

are location-dependent. Even for regions with similar elien Figure 3: Geographical location and spatial distributidrthe measurement
and geographical characteristics, a local determinatfoin®  stations. Blue: Kipp & Zonen CMP6 sensor. Orange: Li-CorGd8Z sensor.
codficients substantially improves the model accuracy. The loStation details are listed in Table 1.

cal JPT implementation described below, has a daily rRMS of

12.8% against data from four independent stations. In fact, reported in this work are based exclusively on GOES 13 images

the best of our !mowledge, the best perfprmance reported fq r the time period from may 2010 to december 2011. No cor-
the JPT model (in terms of rRMS values) is 10.8%, as reporte ection factor was applied and we used directly the brigsgne

by the authors in their original proposal by comparison agfai counts, without conversion to radiances, as it was donesn Ju

U.S. daily data (JUStu.S etal., 1986). A table summariziegeh tus et al. (1986). However, the model could be adjusted gqual
results can be found in Alonso et al. (2011). well using callibrated images with brightness convertechth-
ance.
3. Dataused for thiswork
3.2. Ground measurements
In order to adjust and evaluate the irradiation models tlilat w
be presented in Sections 4 and 5, sets of simultaneoustsatell
and ground irradiation measurements are required. In s s
tion we describe the data used in this work.

The solar irradiance ground data used in this work was col-
lected during the years 2010 and 2011 from seven stations dis
tributed over the territory of Uruguay. The geographicablo
tion of the measurement stations is indicated in Fig. 3 and fu
ther details are included in Table 1. Only the data collected
in the time range May 2010 to December 2011 (i.e., when

GOES satellite images from the visible channel are used t&OES 13 images were available) has been used for this work.
provide cloud cover information with a spatial resolutioh o Three of the stations (codes LB, TT and SA) are equipped with
about 2 km over the target territory. Hourly and daily solarnew Kipp & Zonen CMP6 pyranometers, located at sites of
irradiation estimates are generated with the same spesialu-  the National Institute for Agronomical Research (INIA).éde
tion and compared with independent data from four ground staequipments record global horizontal irradiance at oneutein
tions distributed over the target territory. We used imdgam  intervals and are operated and maintained by our group. The
the visible channel of the GOES-East geostationary stelti-  other four stations (codes BU, PA, JI, RB), equipped with new
erated by NOAANASA and located at longitude ?8V. The  Li-Cor LI200SZ photovoltaic sensors record average global
files contain images from five spectral bands (one visible; fo horizontal solar irradiance at 10 minute intervals. These s
infrared) and are available from the web site of NOAA. A local tions are owned and operated by the local public electriityuti
data bank was built, composed of images starting from the yea&ompany (UTE).

2000, acquired at a frequency of approximately two images pe Hourly irradiation data has been integrated from irradéanc
hour. Each image consists of an array of geo-referenceddime measurements for the same hourly intervals used to compute
sionless brightness counts. Since the actual physicateéley- the mean brightness from the satellite images. Severaiszons
erating as GOES-East has changed over time, the twelve-yetancy checks were run on the data and a small number of hours
image data bank is composed of images from several (GOE®ere discarded. For instance, the clarity index for hourly i

8, GOES 12 and GOES 13)ftérent radiometers. The results radiation,ky, (the ratio of hourly global horizontal irradiation

4
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to the corresponding extraterrestrial value, see Iqba83)8or [ JPTooefficents [ a [ b | c¢ [d{&ym) |

details) was used to discard about 1% of the data kvith 0.8. T ok a|_(1986)‘ ot ‘ 071y ‘ 0301 ‘ s ‘

About 10% of the hours were discarded because no simultane-

ous satellite images were available. Daily totals were gprd

only for days with complete hourly recordse. no interpola- Table 2: Coéicients f_or Eq. (1) obtained in this work from the training,set
tion scheme for missing hours was used. No special correctio compared to the cdcientes reported by Justus et al. (1986).

where applied to the Li-Cor sensors data to correct for salect
response, temperature dependence and cosine error (Kihg an
Myers, 1977, Myers, 2011).

4000

evaluation set

4. Local implementation of the JPT model

3000

In this Section we describe the local implementation of the
JPT model for the target region shown in Fig. 3, which inchide
the whole territory of Uruguay and small parts of Brazil and
Argentina. A first report on this implementation can be found
in Alonso et al. (2011). Here, we summarize those results and
provide updated estimates for the modelféo&nts and per-
formance, due to an increased database.

Hourly average values of cégand its powersBy, and By,
together with coincident ground measurements of hourlgalo
irradiation were used to adjust the ¢beients of Eq. (1), using

measured irradiation (kJ/m?)
2000

1000

a standard least-squares technique. Théfictents{a, b, c, d} o |
vary less than 5% when the model is adjusted using data from 0 1000 2000 39‘00 4000
different sets. Thus we decided to use our own measurement estimated irradiation (kJ/m”)

network (codes LB, SA and TT sites) to train the model. These

d?‘ta 'S_Of controlled-quality, with the data acqwsnm_rdapa- Figure 4: Scatter plot of ground data vs. satellite estimdtem the JPT

nipulation process under our control. These three sitedg@o model (our implementation) for the EVA set on an hourly ba€ikudy hours

adequate coverage of the target region’ as shown in F|g 3. Wlsr < 0.65) are shown in green and mostly clear holis% 0.65) are shown
. . _inblue. The measured value is used to calcukate A diagonal red line has

r_efer t_o thIS_ set as th‘eammg s_et(TRN). The rest of the sta been drawn to indicate the perfect agreement case.

tions listed in Table 1, provide independent measuremesets u

to assess the model performance and are collectively eefas

theevaluation se{EVA). oped for the U.S. (Frulla et al., 1988, 1990). Thus, a local ad
After primary filtering, the TRN set had 14858 hourly justment of the coicients is required for an acceptable per-
records and 845 daily records while the EVA set had 2047Zormance of Tarpley’s model. Fig. 4 shows the hourly scatter
hourly records and 964 daily records. The 14858 hourly datglot between ground data and the satellite-based estirfates
records from the TRN set were also filtered, discarding hourshe ensemble of testing sites. In this Figure, almost clearsh
with cosf, < 0.1; these samples correspond to early morningyith kr > 0.65 are indicated in blue and hours with < 0.65 in
or late afternoon hours which have iigcient illumination and  green. This makes apparent that the JPT model underessimate
may be &ected by large cosine errors. A final training set ofjrradiation for clear hours and mostly overestimates iatoin
13621 hours was obtained and used to adjust théic@mts.  for cloudy hours. This bias is a known issue from this model
The codiicients obtained are shown in Table 2 and compareJustus et al., 1986). In order to reduce it while preserving
to those from the implementation in Justus et al. (1986). Thehe simplicity of the original model, we propose to introduc
general geographic characteristics of our target regimo¢sh  a brightness dependence in the model parameters and evaluat
grasslands with no snow cover, deserts or significant h&ight results by comparison with the independent testing dataleet
are similar to those of the U.S. Great Plains. Hence, whilegoe  distinguish this proposal from the original one by Tarpieg,

expected to dier from those reported by JPT, the agents  call it Brightness-Dependent JPT or BD-JPT for short.
of the clear-sky part of the moded, (b, c) should be of the same

order of magnitude in both implementations. On the othedhan
thed codficient depends on the scaling of the brightness valuesy. Brightness dependent (BD-JPT) model
S0 in this case a comparison is meaningless.

Using Eq. (1) with the ca@cients listed in the first row of The basic idea is to introduce brightness-dependence in the
Table 2, the hourly and daily global solar irradiation wesé-e  set of codficients. The first decision to make is how many
mated for each site in the evaluation group. The overall rRM%rightness subintervals should be considered. As merttioee
deviation was 18.6% on an hourly basis and 12.8% on a dailjore, visual inspection of Fig. 4 allows the identificaticitwo
basis. These results considerably improve those preyiolisl  kind of phenomena: (i) an accumulation of points just abbee t
tained for the same region using Tarpley’s ffméents devel- diagonal, which correspond to mostly clear-sky hours inclvhi
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[ BD-JPTcoefficients | @ [ b [ ¢ [ d(kymd) |
mostly clear hours 0.363 ‘ 0.918‘ —0.518‘ -2.521 ‘

4000

3 mostly cloudy hours | -0.027 | 1.226 | -0.502 -0.599

evaluation set

Table 3: Coéicients for Eq. (3), adjusted from the training set.

3000

counts.
The BD-JPT model parametrization can be expressed as

2000

lse (ro/r)? cost,(as + by cosd, + ... _
2 _R2 Bm < Bm
+¢; COS 6;) + dy (BZ, - BY)
lsc(ro/r)? costy,(a; + by cost, + . ..
+CpCO80,) + by (Bﬁ, - Bg)

®)

measured irradiation (kJ/m?)

1000

Bm > Igm.

The two sets of cd@cients adjusted using the training set
by standard least mean squares techniques are listed in Ta-
ble 3. In the remainder of this section, we introduce the per-
formance indicators and discuss the improvement in irtamtia
estimates that results from introducing brightness depecsl
in the model parameters.

o

0 1000 2000 3000 4000
estimated irradiation (kJ/m?)

Figure 5: Scatter plot for hourly ground data vs. hourlyrastes from the BD-
JPT model for the four EVA sites. Green dots indicate clouolyrk, while blue 5.1. Performance indicators
dots correspond to mostly clear hours. The separatiorrieritethe same used

in Fig. 4. The diagonal red line indicates the perfect agesmase. Statistical models are expected to perform significanttieloe

when their estimates are compared with the training data tha
when the comparison is made against independent data. In the
irradiationis under-estimated and (i) a pattern belowdiago-  Jiterature both kinds of comparisons are reported, andhtiaig
nal with larger spread, that corresponds mostly to cloudy$10 |ead to confusion when comparing the performance fiécént
in which solar irradiation is over-estimated. If these tvéss models. For completeness, we report indicators with reéspec
of points (blue and green in Fig. 4) can be treated separatelpoth sets (training and evaluation). However, in order seas
the model performance should improve significantly. Wité th the model performance we refer to the indicators from the in-
goal of keeping the model as simple as possible, we use onlependent (evaluation) data set. The comparison is doie bot
two brightness intervals which lead to two sets of paramseteron an hourly and a daily basis. We use the Root Mean Square
{a, b, c,d} depending if the hour is classified as mostly clear ordeviation (RMS), Mean Bias Error (MBE) and? ihdicators,
mostly cloudy. which inform about the statistical behavior of the datagtber
For usability, the discrimination between both sets shouldvith a Kolmogorov-Smirnov integral test (KSI) which proeisl
be done on the basis of the satellite image information alonénformation on the distance between the estimates disiwibu
i.e. on theBy hourly values for a given position, since so- and the data distribution. The relative indicators, rRM$l an
lar irradiation (orkt) values are not available at arbitrary loca- rMBE, are expressed as a percentage of the mean value of the
tions. Therefore, the second decision to be made is the €hoigneasured irradiation on the corresponding time basis.
of the threshold on normalized counts used to discriminate b
tween mostly clear-sky hours and mostly cloudy hours. An op5.2. Komogorov - Smirnov test
timum threshold value (in terms of the rRMS performance of A two-sample Kolmogorov-Smirnov test is carried out to cal-
the model) may be obtained from the data using minimizationsjate two performance indicators (Espinar et al., 20081 K
techniques. However, this optimum threshold would propabl (Kolmogorov-Smirnov Integral) and OVER. Let us review thei
be location-dependent. For the sake of simplicity, we cliose  gefinitions and explain how they are computed. The first step i
mean brightness valuBm, from the normalized brightness data o compute estimatoifs for the Cumulative Distribution Func-
of the ensemble of training sites as a convenient thresfidlis.  tions (CDF) of the measured data and of its estimates. Fdr a se

choice is ultimately supported by the good performance ef th of N valuesS = {Xy, Xo, ... Xn}. The empirical CDF is (Scott,
model. The median was also tested as a threshold, but it digigg?)

not improve the results. In Fig. 1, the mean and median for the 1
TRN set are indicated as vertical lines. F(X) = N#{Xi €S, X <X} (4)

Thus, hours withBy, < By, are considered as mostly clear \yhere #-} stands for the cardinal (number of elements) in the
hours, and a sety, by, ¢;, dh} is adjusted and used for irradia- get, The same procedure applied to the sé ektimates from
tion estimation from Eq. (1) for these hours. On the othedhan g model,$ = (X1, X, ... Xn}, VieldsF (X). A distance between
hours withBy, > Bn are classified as mostly cloudy and a setpoth CDFs, for eaclX, is defined as
{az, b2, Cp, do} is adjusted and used for them. For this imple-
mentation, the actual value obtained &y is 17.5 normalized D(X) = [F(X) — F(X)I. (5)
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JPT model performance BD-JPT model performance
Site Hours <> rRMS  rMBE X3 KSI rKSI rOVER rRMS  rMBE 23 KSI rKSI  rOVER
(MIym?) (%) (%) kIm?) (%) (%) (%) (%) kIm?) (%) (%)
LB 4839 141 16.6 -0.5 0.953| 54.0 61.4 5.8 12.1 2.7 0.975| 30.6 34.4 1.8
SA 4794 1.44 175 4.9 0.948| 434 48.6 4.1 13.0 14 0.972| 285 31.8 0.4
TT 5225 1.44 16.6 1.1 0.952| 36.5 42.9 4.3 12.8 -2.3 0.971| 23.2 26.8 0.2
TRN 14858 16.9 1.8 0.951 44.4 50.8 4.7 12.6 -1.2 0.973 27.3 30.9 0.8
BU 5356 1.46 19.1 3.7 0.941| 65.8 77.8 22.1 145 3.5 0.967| 54.3 63.6 9.3
Jl 4958 1.44 17.1 -0.4 0.949| 47.4 54.6 2.1 134 -0.7 0.968| 22.8 25.8 0
PA 4743 1.35 21.4 2.7 0.924| 58.1 65.9 16.8 15.8 17 0.958| 37.2 41.6 3.0
RB 5415 1.43 17.0 -0.5 0.951| 54.1 64.7 5.0 12.4 -0.1 0.974| 233 27.7 0
EVA 20472 18.6 14 0.941 56.5 66.0 115 14.0 11 0.967 34.5 39.9 3.1

Table 4: Performance indicators for the JPT and the BD-JPdemestimates on an hourly basis for both the evaluation (EAffl the training (TRN) sites. The
averages, weighted with the number of hours in each stati@shown in boldface for the EVA and TRN setsl > represents the hourly average of the measured
data.

The null hypothesis that both sets (measurements and esti-
mates) may belong to the same distribution is rejected v@i#h 9
confidence level if, for som¥, D(X) exceeds the critical value

Ve = 1.63/ VN (Massey, 1951). The exce€XX) by which 9 |
D(X) exceeds the threshold is defined as ° o JPT
e BD-JPT
D(X)- V. for D(X)> Ve, g

OX) = { 0 for D(X) < V. 6) °
Finally, the KSI and OVER indicators are computed as the ar- o g1
eas KSI= [D(X)dX and OVER= [ O(X)dX, respectively. z &'L A
Relative indicators rKSI and rOVER are expressed as a per- = J
centage of the area below the thresh@{Xnax— Xmin), where S
Xmin and Xmax are the extreme values & U S. A positive
OVER (or rOVER) indicates that the two-sample Kolmogorov- g
Smirnov test was not passed and the hypothesis that both data
sets, measurements and estimates, belong to the samleudistri 3

tion is statistically rejected. ‘ ; ; ;
The application of this formalism to the case considered in loofmuny ir,ajf;%?,n (kJ/mZ)sooo 4000

this work is straightforward. The measured ground data is

hourly global irradiation], at the evaluation sites and the esti-

o =

mated values are the models’ estimafe$pr the same hours at ey g
those sites. For each ensemble (training sites (TRN) arldava e BD-JPT
tion sites (EVA)), global indicators are computed as a wigidgh g
average of the indicators for each site, with weights prepor
tional to the number of data points in each site. -
o) o
5.3. Improvement due to Brightness Dependence ‘g Ve level = 0.024
Hourly irradiation estimates were generated from both the g4
JPT and the BD-JPT models for the seven ground stations.
About 1% of the estimates which result in negative irradiati g |
have been set to zero due to physical constrains. S
Scatter plots for hourly irradiation estimates from the im-
proved model vs. ground measurements from the EVA set are S

shown in Fig. 5. Visual inspection of this figure shows that th 0 10‘0?] . 5.0‘0.0 ) ,3000 4000
BD-JPT model achieves a significant reduction of the system- oury maciation (k2/ )
atic deviations due to the underestimation of irradiatioder
clear-sky conditions and the overestimation under clowdy c Figl_Jre 6: _Distance between hourly distributiois,defined in Eq. (5), in com-
ditions, with respect to the hou”y scatter plot ofthe JPTomlp  Parison with the/; threshold level for the JI (upper panel) and PA (lower panel)
hown in Fia. 4 sites of the EVA set. The blue symbols correspond to the JPdeiremd the
S g. 4 o . L . green symbols to the BD-JPT model. See text for more details.
The performance indicators for the hourly irradiation -esti
mates from both the JPT and the BD-JPT models are sum-
marized in Table 4. The BD-JPT model shows an important

7



JPT model performance BD-JPT model performance
Site Days <H> rRMS  rMBE 23 KSI rKSI  rOVER rRMS  rMBE X3 KSI rKSI rOVER
(MIym?) (%) (%) MYM?) (%) (%) (%) (%) MYM?) (%) (%)
LB 277 175 10.3 -0.1 0.965 0.63 22.6 0 5.3 -0.2 0.990 0.28 9.3 0
SA 265 17.9 10.6 0.3 0.957 0.63 21.3 0 6.1 1.4 0.986 0.37 11.9 0
TT 303 17.9 9.2 1.5 0.969 0.61 23.0 0 5.5 -0.2 0.988 0.32 11.0 0
TRN 845 10.0 0.6 0.964 0.62 22.3 0 5.6 0.3 0.988 0.32 10.7 0
BU 198 12.7 16.9 5.2 0.919 1.10 40.9 2.0 10.1 4.5 0.973 0.64 21.6 0
Jl 287 17.9 9.7 -0.1 0.963 0.54 19.6 0 5.6 -0.9 0.988 0.32 10.6 0
PA 179 12.0 17.1 5.3 0.922 0.88 32.0 0 8.3 2.6 0.981 0.40 12.9 0
RB 300 17.4 10.6 0.2 0.967 0.57 21.0 0 5.8 0.1 0.988 0.27 9.0 0
EVA 964 12.8 2.1 0.948 0.73 26.7 0.4 7.1 12 0.984 0.39 12.8 0

Table 5: Performance indicators for the JPT and the BD-JPdetsmn a daily basis for both the evaluation (EVA) and thimitng (TRN) sites.< H > represents
the daily average of the measured data. The averages, egigfith the number of days in each station, are shown in boédfar the EVA and TRN sets.

decrease in rRMS and rKSI with respect to the JPT model.
The comparison is meaningful because the estimates from bot
models are compared against the same independent (EVA) data
set. For the JPT model, the evaluation results in an overall
rRMS of approximately 19 % and rKSI of 66 %, while for the
BD-JPT model these indicators are reduced to 14 % and 40 %,
respectively. The rMBE index for both models yields compara
ble results showing small global bias in both cases.

Within the EVA set for the hourly comparison, two sets of
stations can be distinguished by looking at their corredpan
rOVER indicators in Table 4. On one side, the JI and RB sites
exhibit low rOVER values; these rOVER values are also in rea-
sonable agreement with those of the TRN sites. For these two
stations, the BD-JPT model manages to achieve null rOVER,;
this was not the case for the original JPT model. On the other
hand, the other two EVA stations (BU and PA) show the worst
rOVER indicators under both models. For these stationsr aft
on-site inspection, it was found that the sensors were shiade
the early morning hours during the summer months. Although
some of these hours had been filtered out prior to models’ vali
dation, this may explain why these two stations show redativ
poor agreement between estimates and data. In any case, the
application of the BD-JPT model greatly reduced the rOVER
values that resulted from the original JPT model for this péi
sites.

The improvement in the estimation of hourly irradiation ob-
tained by the BD-JPT model is also illustrated in Fig. 6. In
this figure, the EVA sites Jl and PA are considered, to repre-
sent each of the pairs that was just singled out. For each of
these stations, a panel shows the distance fun&idetween
the CDFs of hourly measurements and estimates, for both the
JPT and BD-JPT models. For the case of JI (top panel), the
small area above thé. level for the JPT model corresponds to
the non zero OVER indicator, as already outlined from Table 4
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The application of BD-JPT leads tolafunction that is com-  Figure 7: Scatter plots for daily ground data from the EVAesivs. daily

pIeter belowV,, and implies that the null hypothesis that the estimates for the JPT and'the BD—JPT (lower) models. A dlagmd line has

set of measurements and the set of estimates are drawn feom tFFe" drawn to compare with the ideal, perfect agreemerattsitu

same distribution cannot be rejected. For the PA statiotr (bo

tom panel), the area above th level for the JPT model is  estimates within each day. As expected, due to error cancel-

large: its TOVER is 1@%.The BD-JPT model shows a major |ation in both models the daily indicators are much bettanth

decrease in this area, reaching an rOVER.6f& the hourly ones. The comparison indicators for a daily bass
The daily evaluation was carried out for 964 site-days. YDail summarized in Table 5. Specifically, the rRMS is reduced from

irradiation estimates are generated by summation of thdyhou 12.8% for the JPT model to 7.1% for the BD-JPT model. A
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small over-estimating bias persists, but the BD-JPT modsl| h as a threshold the mean value of the brightness counts, she sy
a rMBE which is about half of the rMBE from the JPT model. tematic bias present in the JPT model is significantly reduce
The rKSl indicator for the BD-JPT models is less than half tha For irradiation estimates from the BD-JPT model, the rRMS is
of the JPT model, showing a significant reduction in the disteduced to 7.1% on a daily basis and to 14.0% on an hourly
tance between both distributions (data and estimates)efExc basis. Deviations for two of the testing stations (BU, PA9 ar
for the BU site, the daily rOVER parameter is zero in both mod-significantly worst than for the rest and this is traced talag
els. problems of these sensors in some early morning hours. So the
The improvement in daily agreement due to brightnessperformance of the BD-JPT model in this region is probably
dependence is clearly illustrated in Fig. 7. Notice thatithe  better than reported here.
provement in the daily indicators with respect to the hourly Both methods (JPT and BD-JPT) are simple multiple regres-
ones is much more dramatic in the case of BD-JPT. This is simsion models and the mainfilculty in their implementation is
ply due to the fact that, in the scatter plots of hourly esteésa the determination of the clear-sky brightness values froen t
(Figs. 4 and 5), the point cloud in the case of BD-JPT exhibitsmages. We have tested the original iterative algorithm pro
much more symmetry around its diagonal. posed by Tarpley (1979) for determinirig, by replacing it
with a standard filtering procedure based on RANSAC, a stan-
dard technigue in robust estimation. The end results wetre no
found to be significantly dierent in both cases, so Tarpley’s al-

gorithm, which is computationally moréfeient has been used
The model presented by Justus et al. (1986) (JPT model) fQf, the final formulation.

estimating hourly solar irradiation from GOES satelliteagpes

6. Conclusions

has been revisited and improved. A local implementation o Even though previous works have assumed a some sort of
) . : Lniversal validity (in space and over time) for the model pa-

the JPT model was developed for a territory that includes th ameters originally derived by Tarpley for the central Laga

plain grasslands of the subiropical eastern part of Soutrm we have shown that a local adjustment of the model pararr;eters

ica. Simultaneous irradiation measurements and GOES 13 im

ages for the 2010-2011 period have been used. The model pIS required to obtain acceptable results in broadly sepdrat-

8as, even if they are similar geographically. In fact, when t
rameters were adjusted using controlled-quality soladia- ! y geograp y '

tion data sets for th i ; territ — JPT model was applied to the central part of South America
IO? E_i”? s€ Sd01 refe stes on our argle ter(rjl ory_( ?_ g with the parameters adjusted for the U.S. Central areaerath
set). The model performance was evaluated against in epeBbor results were obtained. Due to the statistical conoepti

f[jent ?‘?ta _?ets fordfour sge“is(tge E\iA set)f il;tg(t;uted O\:Hr Od of these models, it should not be assumed that their parasnete
_ﬁ:.gel erlrl_oryl an ::mt_r fth e\f]lg_lron Od | ; |§ was Ounbl'have a universal character. Even for regions with similar cl
IS local Implementation ot Ine model ylelds accefta mate and geographical characteristics, such as the U.at Gre

results which represent a significant improvement with eesp Plains and the target area of this work, some of the parameter

to previous evaluations of this_ model in the South Am_er_icar\/ary appreciably. Probably, this may be the reason why Tarp-
region. However, the JPT estimates are found to exhibit th?ey’s model, in spite of its excellent balance between ]
characteristic biases for this model, consisting in a syate& : )

nderestimation of irradiation for clear-sk nditionslaan and simplicity, has not been used more extensively to eima
underestimation of Irradiation Tor clear-sky co ol solar irradiation from satellite data.
overestimation for cloudy hours.

A brightness-dependent version of the model (the BD-JP With the brightness dependence proposed in this work, Tarp-

model) has been proposed as a way to reduce the systema s model can be an excellent tool for accurate solar ifrad

deviations observed in the JPT model, while preservingrits s ation est|mat|0n on an hourly or daily baS|_s. In fact, when
plicity. The formulation and implementation of the improve good-quality ground data are available to adjust the matiel,

model has been explained in detail and two sets of paramé;"-ccur"’le of the daily irradiation gstimates frgm the "“WV
ters (for mostly clear and mostly cloudy sky conditions, re_model may apporach the the typlcal unce_rtalnty as_socmxed t
spectively) have been adjusted using the training data Aet. radiometer measurements, but with a spatial resolutiorf@fa

complete performance evaluation of both models has been Cohllometers.
ducted using independent measurements from the evalisation Acknowledgements: We thank E. Cornalino and M. Draper for pr

on an hourly and on a daily basis. The performance indicatorgging us with ground data from UTE, part of which was usedres t
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