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Abstract

CAMS provides global solar radiation estimates for clear-sky (McClear model) and all-sky (Heliosat-4 method) conditions,
the latter based on MSG satellite information. A performance assessment of these estimates (with site-adaptation and
spatial smoothing) is done, using hourly data from 10 sites in the Pampa Húmeda region of South America. Two
locally adjusted Cloud Index Models (CIM) using GOES-East satellite information are also evaluated. One of them
(CIM-ESRA) is based on the ESRA clear-sky model and the other (CIM-McClear) on the McClear clear-sky model.
Under clear-sky conditions, the site-adapted McClear is found to perform best with a relative root mean square deviation
(rRMSD) of 2.8%. However, in the presence of clouds in the real atmosphere, the model tends to provide lower clear-
sky estimates than the ESRA model which, in our implementation, is only sensitive to average atmospheric trends.
Under all-sky conditions, both CIMs show a small but consistent underestimation of −1.1% in the region and perform
significantly better than the site-adapted Heliosat-4, with rRMSDs of 12.1% (CIM-McClear), 12.5% (CIM-ESRA) and
16.8% (site-adapted Heliosat-4). This performance difference is not a statement about the relative quality of the models,
since it can be explained by the difference in satellite view angle (significantly higher for the MSG satellite than for the
GOES-East satellite). The performance downgrade due to using MSG satellite images out of their recommended area is
quantified. Both CIMs, based on using GOES-East imagery, provide accurate solar irradiation estimates over this region
and can be extended to other areas of Latin America.
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1. Introduction1

The uncertainty of solar resource assessment is one of2

the main factors affecting the financial risk evaluation of3

large scale solar energy projects. This assessment ide-4

ally requires long-term, controlled quality, solar irradiation5

ground data for the project’s site. Since this information6

is not usually available for a given project location, irradi-7

ation estimates based on geostationary satellite images are8

frequently used. These images provide the temporal and9

spatial resolution required for modeling a highly variable10

phenomena like ground level solar irradiation. The general11

idea is to quantify cloudiness using satellite information12

and use it to attenuate the clear-sky irradiation. Different13

models exist for this purpose (Perez et al., 2002; Ceballos14

et al., 2004; Rigollier et al., 2004; Cebecauer et al., 2010;15

Alonso-Suárez et al., 2012; Qu et al., 2017).16

This work focuses on models for estimating ground-17

level solar global horizontal irradiation (GHI) from satel-18

lite information, working at the hourly time scale. Typical19

biases for hourly GHI satellite-derived estimates are within20

±3.5% of the ground measurement’s average (Perez et al.,21

∗Corresp. author: R. Alonso-Suarez, r.alonso.suarez@gmail.com

2013), excluding special cases such as tropical regions, pol- 22

luted areas, high latitude areas with snow, mountains or 23

complex island sites, where higher biases can occur. Typ- 24

ical dispersion for hourly estimates (as quantified by the 25

relative root mean square deviation or RMSD) for arid 26

and semi-arid climates is in the range 7-20% and, for ar- 27

eas with more complex cloud dynamics, between 15-30% 28

(Perez et al., 2013). Uncertainty can be reduced by spa- 29

tial smoothing or site-adaptation techniques, the latter by 30

post-processing the estimates using good-quality ground 31

measurements (Polo et al., 2016). 32

Models for solar satellite-based estimation can be clas- 33

sified as empirical (Tarpley, 1979; Justus et al., 1986; Cano 34

et al., 1986; Alonso-Suárez et al., 2012), physical (Ceballos 35

et al., 2004; Qu et al., 2017) and hybrid (or semi-empirical) 36

models (Perez et al., 2002; Rigollier et al., 2004; Cebecauer 37

et al., 2010). Empirical models rely on parametrizations 38

between solar irradiation and other variables (i.e. satellite- 39

derived cloudiness, solar zenith angle) with a set of pa- 40

rameters that are adjusted from ground measurements. 41

Physical models attempt to model in detail the radiative 42

transfer of solar irradiance through the atmosphere. The 43

Heliosat-4 method (Qu et al., 2017) is a recent example 44

of a successful physical model based on Meteosat Second 45

Generation (MSG) satellite images and radiative transfer 46
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calculations. Hybrid models have an underlying physical47

structure with a few adjustable parameters. Both phys-48

ical and hybrid models are potentially accurate provided49

the required information is available with sufficient qual-50

ity. However, this information (i.e. aerosol optical depth,51

water vapor content, cloud type and phase, among oth-52

ers) is not always available with sufficient accuracy and53

spatial/temporal resolution. On the other hand, empiri-54

cal models require high quality ground measurements of55

adequate length to adjust their parameters and their es-56

timates cannot be extrapolated to other regions. Hybrid57

models provide a trade-off between empirical and physi-58

cal models. A common hybrid model approach is to use a59

physical clear-sky model modulated by a satellite-derived60

cloud index to generate solar irradiation estimates under61

all-sky conditions. These models are collectively known as62

CIM (Cloud Index Methods). The SUNY model (Perez63

et al., 2002) and the early Heliosat models, Heliosat-164

(Beyer et al., 1996) and Heliosat-2 (Rigollier et al., 2004)65

are well known examples of this kind.66

Another satellite-based model (of the empirical type)67

named BD-JPT, as it evolved from an original formulation68

by Justus, Paris and Tarpley (Justus et al., 1986), has been69

recently evaluated for the same region considered in this70

work (Alonso-Suárez et al., 2012). This model has been71

locally adjusted to ground data and used as a basis for the72

solar resource distribution map in Uruguay (Alonso-Suárez73

et al., 2014). In Alonso-Suárez et al. (2012), both the orig-74

inal JPT model and the improved brightness-dependent75

version (BD-JPT) have been evaluated for this region and76

showed interesting results: a relative RMSD of 13% at the77

hourly level with negligible bias was found. These mod-78

els were implemented with the same GOES-East satellite79

information used in this work for locally adjusted CIMs,80

in particular, using the same spatial averaging procedure81

described in Subsection 3.2.4.82

This work provides, among other contributions sum-83

marized at the end of this Section, a first representative84

assessment for the Pampa Húmeda region (South East part85

of South America) of the Heliosat-4 method (Qu et al.,86

2017). The clear-sky part of this method, known as the87

McClear model (Lefèvre et al., 2013), is based on a parame-88

trization of the libRadtran libraries output (Mayer & Kylling,89

2005). McClear uses atmospheric information from the90

CAMS (Copernicus Atmosphere Monitoring Service) and91

ground albedo from the sun-synchronous orbiting MODIS92

satellite (Moderate Resolution Imaging Spectroradiome-93

ter) to estimate clear-sky irradiation. These clear-sky es-94

timates are combined with the McCloud model to produce95

the Heliosat-4 all-sky irradiation estimates. Cloud infor-96

mation and properties are derived from multiple spectral97

channels of the MSG satellite using the APOLLO/SEV98

algorithm (WDC, 2015). Here, the performance of this99

method based on the MSG satellite is compared against100

two locally adjusted hybrid CIMs which use cloud infor-101

mation derived from GOES-East satellite images. One102

of these CIMs is based on the ESRA (European Solar103

Radiation Atlas) clear-sky model (Rigollier et al., 2004) 104

and the other is based on the McClear model. The per- 105

formance comparison between a spatially smoothed site- 106

adapted model based on MSG images and two locally- 107

adjusted models based on GOES-East images helps to 108

quantify the impact of the different viewing angles with 109

which both satellites see the area of interest and empha- 110

sizes the importance of selecting the most adequate satel- 111

lite information for each region. 112

Clear-sky models are important as a basis for CIMs 113

and can be used to provide reliable upper bounds for au- 114

tomated quality assessment of ground data or to com- 115

pute the clear-sky index required by several applications, 116

such as variability assessment or solar resource forecast- 117

ing. Therefore, the performance of the two clear-sky mod- 118

els used in this work (ESRA and McClear) is also eval- 119

uated. These models differ markedly in their description 120

of the atmosphere. While McClear captures the daily and 121

intra-day atmospheric variability, ESRA has a single pa- 122

rameter which, in our implementation, describes average 123

atmospheric information, as explained in Subsection 3.3. 124

This allow us to show a significant difference in the be- 125

havior of the clear-sky estimates whether the actual real 126

atmosphere is clear-sky or cloudy. 127

The main contributions of this work can be summa- 128

rized as follows: 129

• Compares the performance of satellite-based models 130

for all-sky hourly irradiation estimate based on dif- 131

ferent geostationary satellite information and quan- 132

tifies the impact of using satellite estimates out of 133

their recommended area (i.e. satellite zenith angle 134

larger than 60◦). 135

• Compares two clear-sky models that differ in their 136

capability for modelling the short-term atmospheric 137

variability, in particular, by using water vapour as an 138

input. For instance, it is found that when clouds are 139

present in the atmosphere, modelling the short-term 140

variability provides lower clear-sky estimates than 141

using average atmospheric information. The ratio- 142

nale is that the presence of clouds correlates with 143

higher water vapour contents in the atmosphere and 144

this results in lower clear-sky estimates. 145

• Provides a first representative performance assess- 146

ment of the Heliosat-4 method and locally adjusted 147

CIMs for the Pampa Húmeda area, including the 148

gain quantification of a simple site-adaptation pro- 149

cedure applied to the Heliosat-4 estimates. 150

• Quantifies the effect of the satellite information spa- 151

tial smoothing in the region to reduce the uncer- 152

tainty of hourly GHI estimates. 153

The article is organized as follows: Section 2 describes 154

the satellite images, the ground data and the CAMS prod- 155

ucts used in this work, including a short discussion on the 156
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typical view angles from each satellite. In Section 3 the lo-157

cally implemented models and their local-adaptations are158

discussed. This Section also describes the spatial smooth-159

ing procedure (applied to ensure that both satellite data160

sets have the same spatial averaging required for a fair161

comparison). In Section 4 the performance assessment of162

these models is done and discussed. Finally, our conclu-163

sions are summarized in Section 5.164

2. Data165

The area of interest in this work is the part of south-166

eastern South America known as Pampa Húmeda, within167

latitudes 28oS and 36oS. As shown in Figure 1, it includes168

all the territory of Uruguay and parts of Argentina and169

southern Brazil. It is geographically homogeneous (mostly170

plain grasslands) with temperate climate and no important171

elevations. Although temperatures in winter can drop a172

few degrees below freezing point, snow episodes are rare.173

It is classified in the updated Köppen-Geiger climate classi-174

fication (Peel et al., 2007) mostly as Cfa (temperate, with-175

out dry season, hot summers) with the exception of two176

small coastal regions dominated by the influence of the177

Atlantic Ocean and classified as Cfb (temperate, without178

dry season, warm summers).179

Figure 1: Location of the ground measurements stations.

2.1. Ground measurements180

Ten series of GHI ground measurements are consid-181

ered in this work. They belong to two groups, based on182

the quality of the instruments and the declared mainte-183

nance schedule at each site. The first group is composed184

by three ground stations located in Uruguay, Argentina185

and Brazil, whose equipment and procedures comply with186

BSRN requirements (McArthur, 2005): (i) the Solar En- 187

ergy Laboratory experimental research facility (LE) in the 188

north-western part of Uruguay (LES, http://les.edu.uy), 189

(ii) the São Martinho da Serra station (MS), formally a 190

BSRN site, and (iii) the Luján station (LU) located 50 km 191

from Buenos Aires (Argentina) at a specialized research 192

laboratory of the Luján National University (GERSolar, 193

http://www.gersol.unlu.edu.ar/). At these sites, GHI is 194

measured with ventilated secondary standard pyranome- 195

ters and direct and diffuse irradiance are measured using 196

precision solar trackers. Data are recorded as 1-min av- 197

erages of several measurements. The LE instruments are 198

calibrated every two years against a secondary standard 199

(Kipp & Zonen CMP22) kept in storage and with trace- 200

ability to the World Radiometric Reference (WRR). At 201

the LU site, instruments are compared periodically against 202

a Kendall absolute cavity radiometer, calibrated in 2018 203

with traceability to the WRR, which is stored and used 204

sporadically as a reference. The São Martinho da Serra 205

station (code MS) is part of the Brazilian SONDA net- 206

work (http://sonda.ccst.inpe.br/), installed and adminis- 207

trated by the National Institute for Space Research (INPE, 208

Brazil). This network meets the quality criteria estab- 209

lished by World Meteorological Organization (WMO) and 210

was specifically designed to record high-quality meteoro- 211

logical data in different climatic regions of Brazil (Dias da 212

Silva et al., 2014). Cleaning and visual inspection at these 213

sites is performed on a daily basis. Based on our experi- 214

ence, the assigned (P95) global uncertainty for hourly GHI 215

measurements from these sites (LE, LU, SM) is 3% of the 216

average. 217

The second group is composed with data from seven 218

sites of Uruguay’s LES solar radiation network, where spec- 219

trally flat class A or B (according to the new ISO 9060:2018 220

standard) Kipp & Zonen pyranometers are used to mea- 221

sure GHI, among other variables. All these sites are lo- 222

cated either at manned meteorological stations or agro- 223

nomic experimental facilities, and the pyranometers are 224

cleaned and inspected at least on a weekly basis. These 225

instruments are calibrated at LES at most every two years 226

against the Kipp & Zonen CMP22 secondary standard 227

mentioned before. Hourly GHI data from these sites is 228

assigned a typical (P95) global uncertainty of 5% of the 229

average. 230

The location of these sites is provided in Table 1 and 231

their geographical distribution is shown in Figure 1. The 232

data time-period for each site is provided later in Table 2, 233

jointly with the quality filtering summary. Only data sets 234

with a minimum 2-year statistics and complete years (or 235

years and a half) are considered to avoid introducing sea- 236

sonality bias in the data. 237

2.2. Satellite images 238

The target area shown in Figure 1 is covered by two 239

geostationary satellites: the GOES-East (operated by the 240

National Oceanic and Atmospheric Administration, NOAA) 241

and the MSG (operated by the European Organisation 242
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code lat (o) lon (o) alt (m)
LES facility LE -31.28 -57.92 56
São Martinho da Serra MS -29.44 -53.82 489
Luján LU -34.59 -59.06 30
Canelones (Las Brujas) LB -34.67 -56.34 38
Treinta y Tres TT -33.28 -54.17 35
Salto SA -31.27 -57.89 47
Rocha RO -34.49 -54.31 20
Artigas AR -30.40 -56.51 136
Colonia (La Estanzuela) ZU -34.34 -57.69 70
Tacuarembó TA -31.71 -55.83 142

Table 1: Information of the ground measurement stations.

for the exploitation of Meteorological Satellites, EUMET-243

SAT). Due to their positions in the geostationary orbit,244

they have different pixel sizes and view angles over the245

area. The GOES-East satellite pixel size is approximately246

2 km, as expected over the region for the 1 km nadir spatial247

resolution of the former GOES12 and GOES13 satellites248

(Lockheed-Martin, 2019). On the other hand, the MSG249

satellite has a nadir spatial resolution of 3 km (Schroedter-250

Homscheidt et al., 2018) and the pixel size over the region251

is of approximately 7 km1. The satellites’ zenith angles252

for the target region are approximately 40◦ and 70◦ for253

the GOES-East and MSG, respectively.254

Cloud properties and irradiation estimates from satel-255

lite images with view angles above 60◦ are prone to higher256

errors mainly due to increased pixel size, parallax errors257

which produce apparent cloud displacement and the fail-258

ure to fulfill the plane-parallel assumption (Johnson et al.,259

1994; Schroedter-Homscheidt et al., 2018). CAMS pro-260

duces regular publicly available validation reports in which261

its irradiation products are compared to several quality262

ground sites. Figure 2, based on data from a recent val-263

idation report (Lefèvre, 2018), shows the dispersion of264

the Heliosat-4 estimates (as quantified by rRMSD) vs the265

satellite zenith angle z of the ground site. A clear threshold266

is apparent, just below 60◦. Sites with z < 55◦ have aver-267

age rRMSD of about 11% while those with z ≥ 55◦ have268

rRMSD of about 25%. So, large viewing angles can affect269

seriously the accuracy of the irradiation estimates. The270

CAMS User Manual sets the recommended upper limit271

for view angle at 60◦, while still providing the informa-272

tion for higher view angles (Schroedter-Homscheidt et al.,273

2018, Sec. 5.2).274

Information from both satellites is considered in this275

work: cloudiness information for the CIMs is derived from276

GOES-East images, while the Heliosat-4 solar irradiation277

estimates are based on MSG images. GOES-East satellite278

images were downloaded from the NOAA CLASS (Com-279

prehensive Large Array-data Stewardship System) web-280

site (https://www.class.noaa.gov/), where they are pub-281

licly available. Information from the MSG satellite is used282

here out of the recommended zone (satellite zenith angle283

above 60◦) in order to quantify the impact of using such in-284

1For more information see http://www.soda-pro.com

formation for solar resource assessment in the region. The 285

target area location in both satellites fields of view (FOV) 286

is shown in Figure 3. 287

Figure 2: Dispersion (rRMSD) of Heliosat-4 GHI estimates vs view
angle z for several sites. Data obtained from (Lefèvre, 2018). The
dashed lines indicate average rRMSD for z < 55◦ and z ≥ 55◦.

2.3. CAMS products 288

This Subsection briefly describes the CAMS products 289

that are used in this work. The data was retrieved from the 290

CAMS Radiation Service at http://www.soda-pro.com/. 291

These estimates are provided with a reliability flag and 292

only the highest reliability estimates were used. 293

2.3.1. McClear model 294

As mentioned in the introduction, the McClear model 295

produces clear-sky GHI estimates based on look-up tables 296

(LUT) of the libRadtran Radiative Transfer Model (RTM) 297

(Lefèvre et al., 2013; Mayer & Kylling, 2005), which in turn 298

uses atmospheric information from satellite retrievals. Be- 299

ing based on LUT, the McClear model can be used oper- 300

ationally (i.e., in real time) since the substantial compu- 301

tational cost of the RTM calculations is avoided. McClear 302

estimates are available at 1-minute intervals with world- 303

wide coverage while the model inputs are typically avail- 304

able every three hours with a spatial resolution between 50- 305

150 km. Using interpolation techniques, the SoDa website 306

provides estimates for any latitude-longitude combination 307

at 1-minute time resolution and above. 308

In Lefèvre et al. (2013), McClear clear-sky GHI esti- 309

mates were compared to 1-minute clear-sky measurements 310

from eleven BSRN stations covering different climates in 311

America, Europe, Asia, and Oceania. Mean biases be- 312

tween −1% and +3% and mean rRMSD in the range 3-5% 313

were obtained (in both cases expressed relative to mean 314

observed irradiance). This model has also been assessed at 315

the 10-minute level against data from seven sites in United 316

Arab Emirates (Eissa et al., 2015b), where the atmosphere 317

is mostly free of clouds but can have high turbidity. The 318
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(a) GOES-East satellite FOV. Position: 75◦W. (b) MSG satellite FOV. Position: 0◦.

Figure 3: Satellites’ field of view (FOV) identifying in red the area under study. Infrared images are used only for visualization purpose.

rMBD was in the range −1% and +6% and the rRMSD319

was between 4-8%. In a similar climate, using 1-minute320

measurements from three sites in Israel, McClear had rel-321

ative biases between zero and +4% and a rRMSD of 4%322

(Lefevre & Wald, 2016). With the exception of Lefèvre323

et al. (2013), which considers one site in Brasilia, Brazil324

(with different climate and distant more than 2000 km325

from the region of interest in this work), there are no other326

validations of the McClear model in South America.327

2.3.2. Heliosat-4 method328

The Heliosat-4 method (Qu et al., 2017) estimates GHI329

and its components under all-sky conditions. It is based330

on the McClear model and a second LUT model, the Mc-331

Cloud model, also based on RTD calculations. McCloud332

estimates the attenuation of Shortwave Solar Irradiation333

(SSI) due to cloudiness using a clear-sky index based on334

an abacus with four inputs: ground albedo, cloud opti-335

cal depth, cloud coverage and cloud type. Cloud infor-336

mation is obtained from the APOLLO/SEV methodology,337

while ground albedo comes from MODIS. APOLLO/SEV338

is an adaptation of NOAA’s APOLLO algorithm (AVHRR339

Processing scheme Over cLouds, Land and Ocean; Kriebel340

et al. (1989, 2003)) for the SEVIRI (Spinning Enhanced341

Visible and Infrared Imager) instrument. This procedure342

discriminates each pixel in different categories of cloud cov-343

erage before deriving its physical properties. The model344

considers four categories of cloud type and assigns one345

of these types to each covered pixel. The optical depth346

is assigned to each cloudy pixel depending on the multi-347

spectral APOLLO/SEV procedure that provides this in-348

formation only for fully cloudy pixels. Interpolation tech-349

niques are used for pixels in other categories. Based on350

this input information, for each abacus node a clear-sky351

index is retrieved, and then used to calculate GHI using352

a clear-sky libRadtran run over a standard atmosphere.353

More details of this sophisticated model can be found in354

Qu (2013). 355

The Heliosat-4 method was first validated against mea- 356

surements from 13 BSRN stations on a 15-minute basis in 357

Qu et al. (2017). Ten of these sites are located in Europe 358

(including one in the Canary Islands), while the rest are in 359

Israel, South Africa and Algeria. This assessment of the 360

model showed rRMSD values between 15-20% in desert 361

and mediterranean climates and between 26-43% in rainy 362

climates with mild winters. The automatic validation re- 363

ports provided by CAMS at the hourly level (www.soda- 364

pro.com/web-services/validation) using the period 2014- 365

2018, include two sites in the target region of this work. 366

One is an urban site in Buenos Aires (Argentina) and the 367

other is a coastal site in Florianopolis (Brazil). Neither 368

of these sites is representative of the region under study. 369

The former is located in a densely populated urban area 370

where high atmospheric turbidity is frequent. The latter 371

is located in an Atlantic coast island with a climate dom- 372

inated by the ocean and is more than 1000 km away from 373

the closest site used in this work. Performance in these 374

two sites shows rMBDs of −5% and 0% and rRMSDs of 375

25% and 28%, respectively. Both sites have relatively high 376

viewing angles outside the recommended range, 73◦ for 377

Buenos Aires and 62◦ for Florianopolis. In Toravere, Es- 378

tonia, a region with similar satellite view angle (70◦), the 379

evaluation shows a positive bias of +3% and an rRMSD 380

of 28%. On the other hand, in Carpentras, France, with 381

zenith angle 51◦ the rMBD +2% and the rRMSD is only 382

15%. Another case is Tamanrasset, Algeria, a desertic lo- 383

cation near the satellite nadir (zenith angle 27◦), where the 384

performance is −5% rMBD and 15% rRMSD. The rRMSD 385

for these and other sites are included in the CAMS quar- 386

terly validation report and are plotted vs satellite zenith 387

angle in Figure 2 to display the increase in rRMSD for 388

sites beyond z = 60◦. 389
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3. Methodology390

This Section is organized as follows. Subsection 3.1391

presents the quality assessment and clear-sky selection pro-392

cedures applied to the data sets. Subsection 3.2 describes393

the locally implemented models, ESRA model and both394

CIMs, including the cloud index calculation and the spatial395

smoothing applied to the satellite information to reduce396

the uncertainty of hourly estimates. This spatial smooth-397

ing procedure is also applied to the CAMS Heliosat-4 prod-398

uct, for a fair comparison, as explained at the end of Sub-399

section 3.2.4. Finally, Subsection 3.3 describes the local400

adaptation procedures used for the different models and401

estimates. This includes the adjustment of locally imple-402

mented models and the site adaptation of CAMS products,403

for fair comparison.404

3.1. Pre-processing of data405

Hourly horizontal irradiation was calculated for each406

site from the original one-minute ground measurements.407

Hours with more than 10-minute gaps were discarded. The408

following quality-control filters were applied to the day-409

light hourly GHI measurements:410

(i) Minimum solar elevation: αs > 7o; in order to avoid411

data affected by large cosine errors.412

(ii) Maximum irradiation: GHI < GHI∗csk; the ESRA413

clear-sky model (Subsection 3.2.1) was used with a414

low Linke turbidity factor TL = 2 to compute GHI∗csk415

as an upper bound for GHI. This value of TL is suf-416

ficiently low (see the average TL cycle shown in Fig-417

ure 5) for this purpose and it has been previously418

used in this region to generate an upper bound for419

hourly GHI (Abal et al., 2017).420

(iii) Modified clearness index bounds: 0 < k′T < 0.85;421

the modified clearness index, k
′

T , is defined in Perez422

et al. (1990).423

(iv) Coincident pairs of GHI and GOES-East satellite in-424

formation. The samples discarded at this stage are425

mainly determined by the GOES-East satellite avail-426

ability, as discussed below.427

(v) Coincident pairs of GHI and Heliosat-4 estimates.428

As mentioned, only Heliosat-4 estimates flagged with429

the highest reliability are considered.430

GOES-East image availability for South America was431

irregular before the year 2018, when the new GOES-R432

started operations at the GOES-East position. For the433

period 1997-2017, these images are normally available at434

a rate of two per hour. However, hourly or tri-hourly gaps435

result for South America when the GOES-East satellite436

was placed under Rapid Scan Operation mode for spe-437

cific areas. The hourly satellite information was obtained438

by linear interpolation of the satellite time series under439

the restriction of not interpolating across gaps larger than 440

three hours. 441

The filtering results for each site are summarized in 442

Table 2, where filters (ii) and (iii) are grouped in a sin- 443

gle column for brevity. It describes the filters sequentially 444

applied to the initial data set (daylight values), so that 445

each discard percentage refers to the previous column and 446

the number of records that passed all previous filters is 447

informed at each stage. The last two columns indicate the 448

final hourly records for all-sky and clear-sky conditions, 449

respectively. After this filtering procedure, a set of 160298 450

hourly GHI records are available for the all-sky model as- 451

sessment. 452

The selection of the clear-sky subset was based on the 453

procedure proposed by Remund et al. (2003). This algo- 454

rithm is based on five consecutive filters applied to hourly 455

data, but the main criterion is to impose a lower thresh- 456

old of 0.7 on the modified clearness index, k′t (Perez et al., 457

1990). We added an extra filter to this procedure imposing 458

a bound on daily variability: if the standard deviation of 459

the k′t series within a day was over 0.05, the whole day was 460

discarded. The threshold of 0.05 was heuristically deter- 461

mined to ensure that only clear-sky records were selected, 462

since any contamination by partly cloudy samples would 463

artificially affect the clear-sky models performance assess- 464

ment. The amount of clear-sky hours selected for each site 465

is indicated in the last column of Table 2. Considering all 466

sites, 34050 hourly clear-sky samples were selected. 467

3.2. Locally implemented models 468

3.2.1. ESRA model 469

The ESRA clear-sky model was developed in the frame- 470

work of the European Solar Radiation Atlas (Rigollier et al., 471

2000) and used with Meteosat images as part of the Heliosat-2472

method for SSI modeling (Rigollier et al., 2004). It esti- 473

mates direct normal irradiance (DNI) and diffuse horizon- 474

tal irradiance (DHI) under clear-sky conditions. The GHI 475

estimate is obtained from GHI = DNI×cos θz +DHI. The 476

single input in this model is the Linke Turbidity factor, 477

TL, for air mass 2. It is usually interpreted as the num- 478

ber of clean, dry atmospheres (i.e. with no clouds, water 479

vapor or aerosols) which would produce the same attenua- 480

tion effect on GHI as the real cloudless atmosphere. Thus, 481

TL includes in one effective parameter the information on 482

water vapor density and aerosol contents of the real atmo- 483

sphere (Linke, 1922; Ineichen & Perez, 2002). Given its 484

simplicity and the fact that it may provide accurate esti- 485

mations if the TL values are locally obtained with sufficient 486

time resolution (Gueymard, 2012), the ESRA model is a 487

frequent choice to model clear-sky irradiation. Here, the 488

TL cycles have been derived on an monthly basis from the 489

GHI measurements, as discussed in Subsection 3.3. 490

ESRA model performance has been analyzed in several 491

studies (Gueymard, 2012; Engerer & Mills, 2015; Ineichen, 492

2016; Antonanzas-Torres et al., 2019; Sun et al., 2019) that 493

consider different climates around the world. This model 494
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daylight (i) solar altitude (ii) & (iii) bounds (iv) GOES images (v) CAMS reliability clear-sky
site period hours disc. hours disc. hours disc. (%) hours disc. hours hours
LE 01/15–12/17 12432 9.8% 11216 1.9% 11004 0.4% 10964 6.0% 10307 2783
MS 01/10–12/16 30199 9.0% 27493 2.3% 26854 1.8% 26367 6.9% 24553 5257
LU 01/10–12/13 17025 10.7% 15195 3.0% 14741 3.1% 14283 9.5% 12925 3282
LB 06/10–12/17 28826 10.3% 25843 1.8% 25383 2.0% 24882 6.6% 23232 4931
TT 06/10–05/16 24705 9.8% 22294 3.0% 21629 2.2% 21153 7.1% 19652 2790
SA 06/10–12/14 19083 9.8% 17216 1.7% 16930 2.9% 16446 8.1% 15122 4412
RO 06/11–12/17 27120 9.6% 24514 2.8% 23831 2.0% 23351 6.0% 21940 3329
AR 01/12–12/17 21955 9.0% 19970 2.3% 19509 1.1% 19290 6.3% 18071 4239
ZU 01/16–12/17 8686 10.6% 7766 1.6% 7645 0.5% 7605 5.2% 7206 1514
TA 01/16–12/17 8659 9.1% 7871 2.2% 7697 0.5% 7658 4.8% 7290 1513

total 198690 9.7% 179378 2.3% 175223 1.8% 171999 6.8% 160298 34050

Table 2: Quality check and data set description for each ground measurement site. The % discarded and the number of hours that pass each
filter are informed. The last two columns indicate the all-sky and clear-sky hours used for model assessment.

usually is well ranked among other simple proposals and495

its uncertainty mostly depends on the quality of the TL in-496

put data being used. Its validation in the Pampa Húmeda497

region has been scarce and comprises only one prelimi-498

nary local study using five measurement sites in Uruguay499

(Laguarda & Abal, 2017) where a rMBD of −0.5% and a500

rRMSD of 4.5% were found for clear-sky hourly GHI esti-501

mation. Validations for similar climates (Cfa and Cfb in502

the Köppen-Geiger classification) are as follows. In Guey-503

mard (2012) a rMBD of +4.3% and rRMSD of 4.9% was504

found for the ARM-SGP site (Oklahoma, USA) using 1-505

minute GHI measurements. In Engerer & Mills (2015) the506

ESRA model was evaluated at 14 sites using 1-minute GHI507

data from the Australian Bureau of Meteorology, four of508

which are in the relevant climate zones. For these, rMBDs509

between +2% and +9%, and rRMSDs between 3.7% and510

8.0% were found. An exhaustive revision of 38 validation511

studies of clear-sky models performance, most of them in-512

cluding ESRA, can be found in Ruiz-Arias & Gueymard513

(2018). Overall, there is a considerable spread in the per-514

formance of the ESRA model, depending on climate and515

implementation details, and simplicity is one of its key516

features.517

3.2.2. Cloud Index Methods (CIM)518

As mentioned before, this family of SSI models has the519

common structure of a clear-sky model with a modulating520

factor that takes into account the effect of clouds. The521

clear-sky index, GHI/GHIcsk, can be modeled by a cloud522

attenuation factor, F (C), which depends on the satellite-523

derived cloud index C defined in the following in Eq. (3).524

In this work, we use a simple linear function,525

F (C) = a+ b× (1− C), (1)
where a and b are locally adjusted for each site. Then,526

GHI is computed from:527

GHI = GHIcsk × F (C). (2)
In this work, Eqs. (1) and (2) are implemented using528

the two clear-sky models discussed before (ESRA and Mc-529

Clear) and the resulting CIMs are referred in what follows530

as CIM-ESRA and CIM-McClear, respectively. We em- 531

phasize that the a and b parameters in Eq. (1) are site 532

and model-specific. The coefficients for CIMs in the re- 533

gion are part of the results of this work and are discussed 534

in Subsection 3.3 on local adaptation (Table 3). 535

3.2.3. Cloud index calculation 536

The satellite-derived cloud index (Cano et al., 1986),
C, is a dimensionless parameter in [0, 1] that quantifies the
amount of cloudiness. It is obtained from the Earth albedo
(or planetary reflectance), ρp, by normalization with ex-
treme values ρmin and ρmax associated with clear and over-
cast skies respectively,

C =
ρp − ρmin

ρmax − ρmin
for ρmin < ρp < ρmax. (3)

Additionally, the constrains C = 1 for ρp > ρmax and 537

C = 0 for ρp < ρmin are imposed. The parametriza- 538

tion proposed in Tarpley (1979) is used in this work to 539

estimate the intra-day and seasonal variation of the back- 540

ground albedo. This parametrization models the back- 541

ground reflectance factor, FRo = ρpo/ cos θz, and needs 542

to be adjusted for each pixel in the image using satellite 543

clear-sky samples. These clear-sky samples are automati- 544

cally selected from the pixel’s satellite time-series by a ro- 545

bust iterative procedure described in Alonso-Suárez et al. 546

(2012). This adjustment procedure can be updated on 547

real time taking the past pixel samples, but for the sake 548

of this work it was done only one time using the 2010- 549

2017 satellite period. After the coefficients for each pixel 550

(or site) are adjusted, whether on real-time or offline, the 551

parametrization can be used to estimate the FRo time- 552

series at hourly intervals. Then, the ρmin time-series is 553

calculated by setting ρmin = ρpo = FRo/ cos θz. A proper 554

background albedo characterization is an important step 555

in order to obtain useful cloud index information. For 556

ρmax, a fixed constant value of 0.80 is chosen, since this 557

value has been found to optimize the performance in the 558

region of satellite-based models for GHI (Laguarda et al., 559

2018). 560
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3.2.4. Spatial smoothing561

In order to use satellite information at an hourly basis,562

the reflectance ρp obtained from GOES-East images has563

been spatially averaged in a 10 min × 10 min latitude-564

longitude cell centered at the site of interest. For this565

target region, this corresponds to cells of approximately566

16 km × 18 km. This is equivalent to an ergodic hypoth-567

esis, where the spatial average of an instantaneous image568

within a cell is representative of the average conditions at569

the center of the cell within the hour. The cell size has been570

optimized to minimize the uncertainty of hourly satellite571

models. The rRMSD trend as a function of the cell size572

is shown in Figure 4, based on the CIM-McClear model.573

This curve is essentially the same as a similar one reported574

in Alonso-Suárez (2017), but using different ground sta-575

tions, data time-span and satellite model. Hence, this576

curve can be considered characteristic for locally-adapted577

satellite based models in the target region. Inspection of578

Figure 4 shows that the minimum is shallow and essen-579

tially the same performance is obtained between 8 min and580

12 min latitude-longitude spacing, which approximately581

correspond to cells with 12 km× 15 km and 18 km× 22 km582

area, respectively.583

Figure 4: Local rRMSD curve as a function of the spatial smoothing.

The Heliosat-4 estimates are generated for single pixels584

without any spatial smoothing (pixel size is around 6-7 km,585

as discussed in Subsection 2.2). For fair comparison, the586

Heliosat-4 estimates were downloaded for each site in a587

grid of 3× 3 pixels surrounding each location, accounting588

for a similar spatial averaging (' 21 km × 21 km). The589

average of the nine time-series has been used as the model’s590

estimates for each site.591

3.3. Local adaptation 592

The aim of local adaptation is to reduce bias and, more 593

generally, to improve model performance in a given homo- 594

geneous geographical area. It can be achieved either by lo- 595

cally adjusting the model’s parameters or by site-adapting 596

their estimates. Since the CIMs have locally adjusted pa- 597

rameters, for a fair comparison, the estimates available 598

from CAMS for the McClear and Heliosat-4 models must 599

be site-adapted. 600

A widely used site adaptation technique consists of a 601

linear regression correction between the hourly model es- 602

timates and the ground data (Polo et al., 2016). This 603

strategy is used in this work to site-adapt the estimates 604

from both CAMS models. In Section 4 the results for Mc- 605

Clear model and Heliosat-4 method are provided with and 606

without site-adaptation, so the performance gain of the 607

adaptation procedure can be observed. 608

CIMs, based on the site-adapted McClear or ESRA es- 609

timates, are locally adapted by adjusting their two param- 610

eters to ground data (a and b, see Eq. (1)) using a standard 611

cross validation technique, where half of the data is ran- 612

domly selected to train the model and the other half is used 613

to evaluate its performance. The procedure is repeated 614

1000 times to ensure repeatability, and the ensemble av- 615

erage uncertainty and adjusted parameters are reported. 616

In this context, it is worth pointing out that the cloud in- 617

dex calculation includes also an implicit local adaptation 618

at each pixel, as the ground albedo (image background 619

brightness) has been locally adjusted by modelling the FRo 620

(and ρmin) time series, as described in Subsection 2.2. The 621

locally adjusted parameters for the CIMs are shown in Ta- 622

ble 3 for each site. Both CIMs have similar values for a 623

and b and there is a good agreement across sites. This 624

is considered a sanity check for the proposals and the ad- 625

justment, as the region is mostly uniform in geography and 626

climate. Thus, the average set of parameters can be used 627

for the region without significantly affecting performance. 628

In the case of the ESRA clear-sky model, the local 629

adjustment is made through the TL values used as in- 630

put. Yearly cycles of average TL values are estimated for 631

each site using its GHI data and the ESRA GHI clear-sky 632

parametrization. These values were obtained from clear- 633

sky samples of ground measurements by minimizing the 634

statistical deviation between the model and the ground 635

truth, as detailed in Laguarda & Abal (2016). The re- 636

sulting average TL cycles have a small spatial variation, 637

as shown in Figure 5, where the spatially averaged yearly 638

cycles for TL are shown for two broad regions which cor- 639

respond approximately to the areas of Figure 1 separated 640

by latitude 33oS (North and South). Values for TL are be- 641

tween 2.8 and 4.2, with higher values in the summer and 642

lower values in winter. 643

This method captures seasonal effects and models the 644

average trends in the local atmospheric turbidity and wa- 645

ter vapor. However, it does not attempt to model its daily 646

or hourly variability. In this way, the issue of using dif- 647
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CIM-McClear CIM-ESRA
site a b a b

LE 0.073 0.92 0.040 0.94
MS 0.076 0.91 0.053 0.92
LU 0.062 0.92 0.041 0.93
LB 0.068 0.91 0.044 0.93
TT 0.072 0.90 0.052 0.91
SA 0.055 0.93 0.031 0.94
RO 0.075 0.90 0.054 0.91
AR 0.076 0.91 0.048 0.92
ZU 0.070 0.91 0.045 0.92
TA 0.074 0.91 0.045 0.93

mean 0.070 0.92 0.045 0.93

σ 9.7 % 1.0 % 15.6 % 1.2 %

Table 3: Locally adjusted parameters of cloud index models
(Eq. (1)). The last two rows show the weighted average and the
standard deviation (P67) as a %.

ferent TL formulae based on different quality satellite re-648

trievals or atmospheric inputs is avoided.649

Figure 5: Daily cycles for TL (no unit) obtained from clear-sky data
in Laguarda & Abal (2016). The northern and southern zones are
separated approximately by the 33oS latitude parallel (see Figure 1).

4. Results650

4.1. Performance metrics651

The performance assessment is done using three com-652

mon indicators: the mean bias deviation (MBD), the root653

mean square deviation (RMSD) and the Kolmogorov-Smirnov654

integral (KSI). The first two measure the average bias and655

the average dispersion of the residuals, respectively. These656

are expressed in relative terms as a percentage of the mea-657

surement average (rMBD and rRMSD, respectively). The658

KSI is a statistical similarity index based on the distance659

between the probability distributions of the measurements660

and the estimates (Massey Jr., 1951; Espinar et al., 2009).661

A useful discussion and examples of use of these indicators 662

can be found in Gueymard (2014). 663

Whenever average metrics over all sites are reported, 664

the P95 uncertainty assigned to each ground measure- 665

ment’s data set is used to weight the averages, so that 666

higher quality data will have more impact on the indica- 667

tors. The weight for each site is calculated as wi = c/u2i 668

with ui the assigned relative uncertainty for measurements 669

from site i. The set of weights is scaled by c to add up 670

to unity, c ×
∑

i 1/u2i = 1. This standard weighting pro- 671

cedure has been previously used in a similar context with 672

good results (Abal et al., 2017). 673

4.2. Clear-sky models (McClear, ESRA) 674

The performance assessment for clear-sky models un- 675

der cloudless conditions is shown for each site in Table 4, 676

where the last column shows the (weighted) average in- 677

dicators over all sites and the last row shows the ground 678

measurement averages for the clear-sky hours under com- 679

parison. This information is provided to enable the reader 680

to compute the absolute indicators, if needed. 681

Both models, whether locally-adapted or not, perform 682

well and within the expected ranges at all sites, and the 683

rRMSD indicators are similar to the P95 uncertainty as- 684

signed to the high quality ground data sets. The McClear 685

estimates as provided by the CAMS platform (without site 686

adaptation) show a small positive average bias of +1.4% 687

with small but consistent overestimation at all sites. The 688

rRMSD values range from 2.7% to 4.3% with an average 689

of 3.2% while the average KSI is 8.9 Wh/m2. This non 690

site-adapted model’s performance is similar to that of the 691

ESRA model with locally adjusted TL values, which has 692

an average rRMSD of 3.5%. However, the site variabil- 693

ity is lower for the ESRA model, ranging from 3.2% to 694

3.8%. This model is essentially unbiased (its average bias 695

is −0.1% and it is within ±0.3% across all sites). This 696

results in a lower KSI metric than the original McClear 697

estimates, with a site-averaged KSI of 5.0 Wh/m2. 698

The site-adapted McClear model provides the best per- 699

formance: it is unbiased and consistently has the lowest 700

rRMSD and KSI across all sites. The site-average rRMSD 701

of the locally adapted McClear is 2.8%, ranging from 3.7% 702

at the oceanic RO site and as low as 2.5% at the high 703

quality LE site. Similarly, the average KSI is 1.9 Wh/m2, 704

showing a superior performance also from a statistical sim- 705

ilarity point of view. As mentioned, this model takes into 706

account the atmospheric short-term variability, while the 707

less sophisticated ESRAmodel only takes into account sea- 708

sonal trends in atmospheric turbidity. 709

These indicators (low or negligible bias deviation and 710

rRMSD in the range 3-4%) are not surprising from lo- 711

cally adjusted clear-sky models (Gueymard, 2012). Lower 712

indicators (around 2%) have been reported for detailed 713

models with high quality atmospheric information, such as 714

the REST2 clear-sky model at particular locations (Guey- 715

mard, 2008). Taking into account the uncertainties of our 716

hourly ground data set, the performance assessment of the 717
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clear-sky models cannot be made to those limits. A shorter718

1-minute time scale and pyrheliometer data (accurate to719

1%) would be required to further explore the performance720

limits of the McClear or other models, such as REST2, in721

this region. However, this is out of the scope of this work.722

4.2.1. Clear-sky models under all-sky conditions723

In several applications, such as CIMs or short-term724

forecasting, the output of a clear-sky model is used under725

non clear-sky conditions. Thus, it is relevant to investigate726

the output characteristics of clear-sky models under non727

clear-sky conditions.728

Figure 6 reveals a relevant difference between the two729

clear-sky models estimates under non clear-sky conditions.730

Both panels show the hourly clear-sky estimates from each 731

model as a function of the cosine of the solar zenith angle 732

for all-sky conditions. The ground measurements (all-sky) 733

are shown in the background in grey. As shown in Fig- 734

ure 6a, the estimates from the McClear model are affected 735

by the actual sky condition, being lower when there are 736

clouds in the real atmosphere (blue dots) than under real 737

clear-sky conditions (green dots). This behavior is not 738

observed in the ESRA model (Figure 6b) where the esti- 739

mates under clear-sky and all-sky condition show the same 740

characteristics. 741

In the presence of clouds, particularly under heavy 742

overcast conditions, there is more water vapour in the at- 743

mosphere. Since the McClear model takes into account the 744

model metric LE MS LU LB TT SA RO AR ZU TA all sites
McClear rMBD (%) 1.1 1.8 0.7 1.7 1.8 1.3 2.1 2.7 2.1 2.8 1.4

(original) rRMSD (%) 2.7 3.4 3.0 3.6 3.8 3.1 4.3 4.1 3.6 4.0 3.2
KSI (Wh/m2) 6.8 11.5 4.6 10.3 10.5 7.9 13.3 17.3 13.3 17.6 8.9

McClear rMBD (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(site adapted) rRMSD (%) 2.5 2.8 2.9 3.2 3.3 2.8 3.7 3.0 2.9 2.9 2.8

KSI (Wh/m2) 1.5 1.7 2.1 1.9 2.7 2.5 2.0 1.8 3.6 2.4 1.9

ESRA rMBD (%) −0.1 −0.2 0.1 −0.1 −0.1 −0.1 −0.1 −0.1 0.2 −0.3 −0.1

(adjusted TL) rRMSD (%) 3.2 3.6 3.5 3.4 3.7 3.4 3.8 3.7 3.6 3.4 3.5
KSI (Wh/m2) 4.2 5.6 4.9 4.6 5.1 5.1 5.2 5.6 5.7 5.4 5.0

measurement average (Wh/m2) 641 632 621 610 595 621 626 629 622 640 629

Table 4: Performance of the McClear original model, the site-adapted McClear model and the locally adjusted ESRA model under clear-sky
conditions. The last row is the measurement average of the clear-sky hours. The last column holds the weighted metrics average over sites.

(a) Site-adapted McClear estimates under clear-sky (green)
and non clear-sky (blue) conditions.

(b) Locally-adapted ESRA estimates under all-sky condi-
tions (clear-sky and non clear-sky conditions).

Figure 6: Clear-sky estimates under different real sky conditions for McClear and ESRA models vs the cosine of the solar zenith angle. In
the background, the measured ground data is in gray. For colors please refer to the online version of the manuscript.

10



actual water vapour content, it provides lower clear-sky es-745

timates under cloudy sky condition than under clear-sky746

conditions. On the other hand, the ESRA model as im-747

plemented here is based on TL monthly averages, so it is748

insensitive to short term variations in the atmosphere, in749

particular to the presence of clouds. This difference in750

the behaviour observed for these two models may appear751

when any model with real-time atmospheric water vapor752

information is compared to a model which uses average753

information for a given region. This issue should be taken754

into account in applications using clear-sky estimates un-755

der all-sky conditions.756

To quantify this difference, a comparison is made be-757

tween the clear-sky estimates from both models, stratified758

according to the actual sky condition. The average devia-759

tions (rMD) between both models are expressed according760

to ∆ = GHImcclear
csk − GHIesracsk , as the ESRA model esti-761

mates are not affected by the presence of clouds and thus762

it is more similar to a fixed upper limit for hourly all-sky763

conditions (see Figure 6b). The comparison between both764

models, shown in Table 5, has a negligible mean deviation765

under clear sky conditions (+0.1%, on average). How-766

ever, in the presence of cloudiness, McClear estimates are767

systematically lower than ESRA estimates, with an aver-768

age difference of −5.2%. Furthermore, negative deviations769

ranging between −3.9% and −6.9% are observed consis-770

tently across sites. It is important to emphasize that this771

analysis does not imply ranking one model over the other772

in terms of accuracy, but rather to highlight and quantify773

their different behaviour under cloudy conditions.774

4.3. All-sky models (Heliosat-4, CIM)775

Results for the all-sky models are presented in this Sec-776

tion. The evaluation includes four models: the original777

Heliosat-4 estimates, the site-adapted Heliosat-4 estimates778

and the locally adjusted CIM-ESRA and CIM-McClear779

models. The inclusion of the original Heliosat-4 estimates780

allows an evaluation of the impact of site-adaptation for 781

this model in the region. The performance evaluation for 782

the four all-sky models is presented in Table 6. 783

The original Heliosat-4 estimates have a low overall 784

bias deviation of −0.8%, but with a variation across sites 785

within ±1.9%. The average rRMSD metric is of 17.9%, 786

which is to be expected for a non locally adapted and space 787

averaged satellite based model. High dispersion across 788

sites is also seen in the KSI metric, ranging from about 789

10.1 to 23.4 Wh/m2 with an average value of 17.7 Wh/m2. 790

In the unbiased site-adapted version, the rRMSD metric 791

is reduced only slightly to 16.8% while the KSI becomes 792

10.2 Wh/m2 (average values). The KSI is a more sensitive 793

indicator than rRMSD and it is more reduced by the site 794

adaptation procedure. 795

The locally adjusted models (CIM-ESRA and CIM- 796

McClear) have small negative biases across all sites (neg- 797

ative and less than 1.4% in absolute magnitude) with a 798

weighted average of −1.1% in both cases. This is a small 799

but consistent underestimation observed for these models 800

across all sites. The rRMSD metric ranges from 11.2% 801

to 14.1% for the CIM-ESRA and from 10.6% to 13.8% 802

for the CIM-McClear. The average rRMSD is 12.5% for 803

CIM-ESRA and 12.1% for the CIM-McClear model. This 804

represents a significant improvement with respect to the 805

site-adapted Heliosat-4 estimates, whose rRMSD is in the 806

15.4-19.6% range, with an average of 16.8%. Similarly, 807

the average KSI is 7.0 Wh/m2 for the CIM-ESRA and 808

8.4 Wh/m2 for the CIM-McClear which also represents 809

a reduction with respect to the site-adapted Heliosat-4 810

(10.2 Wh/m2 on average). Overall, the CIMs represent 811

a significant improvement in the accuracy of GHI estima- 812

tion for this region, with respect to the Heliosat-4 method 813

whether it is site-adapted or not. As the Heliosat-4 is a 814

sophisticated method that considers many atmospheric in- 815

puts and phenomena, usually ranked among the best per- 816

forming models, these important difference of more than 817

average of ESRA rMD (%) rRMSD (%) KSI (Wh/m2)
site estimates (Wh/m2) csk non csk csk non csk csk non csk
LE 599 +0.1 −6.9 2.8 9.8 3.9 41.4
MS 608 +0.2 −4.9 2.6 7.6 5.0 29.8
LU 579 −0.1 −4.0 2.6 5.7 4.2 23.0
LB 566 +0.1 −4.2 2.8 6.5 4.6 23.8
TT 582 +0.1 −3.9 2.3 5.9 4.2 22.8
SA 589 +0.1 −5.0 2.8 7.2 5.1 29.7
RO 576 +0.1 −3.9 2.6 6.0 4.1 22.4
AR 592 +0.1 −5.8 2.8 8.4 4.9 34.4
ZU 579 −0.1 −4.9 2.8 7.7 5.2 28.4
TA 586 +0.3 −5.7 2.7 8.4 4.6 33.1

average 592 +0.1 −5.2 2.7 7.6 4.4 30.6

Table 5: Comparison between clear-sky models estimates: site-adapted McClear vs ESRA, under clear-sky conditions (csk) and non clear-sky
conditions (non cks). The higher ESRA average is used for normalization, without implying greater accuracy. The last row shows the weighted
average across sites.
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4% of rRMSD metric in comparison with simple CIMs is818

mostly attributable to the use of the different satellite in-819

formation, particularly, the different satellite FOV for the820

region. Local adaptation and spatial smoothing have been821

done to both type of models, so the difference is not at-822

tributable to these features. Heliosat-4 estimates are used823

here outside the recommended area and its performance is824

affected by the large viewing angle of the MSG satellite in825

the region. Hence, the difference found is a quantification826

of the increase in uncertainty when using CAMS all-sky827

GHI estimates out of the recommended area.828

The CIM-McClear model has a slightly better perfor-829

mance than the CIM-ESRA in terms of rRMSD (12.1%830

compared to 12.5%). However, the opposite behavior is831

observed in statistical similarity, with an average KSI be-832

ing 7.0 Wh/m2 for the CIM-ESRA and 8.4 Wh/m2 for the 833

CIM-McClear. Therefore, it can be concluded that both 834

CIMs have a remarkable good performance in this region 835

and both can be used with low uncertainty for solar re- 836

source assessment. However, if these metrics are priori- 837

tized in the presented order (MBD, RMSD and KSI), the 838

CIM-McClear model performs slightly better, as it has a 839

similar bias but a reduced RMSD in comparison with CIM- 840

ESRA. 841

The scatter plots in Figure 7 compare the three locally 842

adapted all-sky models with the ground measurements for 843

all sites data. The smaller dispersion of the two CIMs 844

can be seen with the naked eye. At higher irradiances 845

(GHI > 800 Wh/m2) an overestimation is apparent in 846

the site-adapted Heliosat-4 estimates. For the same con- 847

model metric LE MS LU LB TT SA RO AR ZU TA all sites
Heliosat-4 rMBD (%) -1.0 0.6 -3.1 -1.5 0.8 -2.6 2.6 0.2 0.6 1.9 −0.8

(original) rRMSD (%) 17.5 19.4 16.6 17.3 17.8 18.0 20.4 16.8 17.7 17.7 17.9

KSI (Wh/m2) 22.0 12.8 21.3 16.0 10.1 23.4 11.2 13.6 13.9 12.5 17.7

Heliosat-4 rMBD (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(site adapted) rRMSD (%) 16.0 18.6 15.4 16.4 17.3 16.5 19.6 16.0 16.9 17.0 16.8

KSI (Wh/m2) 9.5 11.6 10.3 9.5 10.1 9.0 10.6 9.7 8.8 9.0 10.2

CIM-ESRA rMBD (%) −0.9 −0.9 −1.2 −1.1 −1.2 −1.1 −1.3 −1.1 −1.1 −1.3 −1.0

(adjusted TL) rRMSD (%) 11.2 14.1 12.3 12.2 13.1 11.8 13.6 11.4 11.9 12.0 12.5
KSI (Wh/m2) 5.1 6.3 9.3 7.8 9.0 6.5 8.9 6.2 6.6 6.7 7.0

CIM-McClear rMBD (%) −0.6 −1.2 −1.3 −1.1 −1.3 −1.1 −1.4 −1.0 −1.2 −1.0 −1.1

(site adapted) rRMSD(%) 10.6 13.8 12.1 12.0 12.9 11.3 13.6 11.0 11.5 11.6 12.1
KSI (Wh/m2) 4.9 9.2 10.8 8.7 10.7 7.9 10.7 7.2 8.5 7.0 8.4

measurement average (Wh/m2) 463 446 465 438 437 469 427 458 440 438 448

Table 6: Performance metrics for the all-sky models against ground measurements: original Heliosat-4, site-adapted Heliosat-4, CIM based
on ESRA and CIM based on site-adapted McClear. The last column shows the weighted average across sites.

(a) Heliosat4. (b) CIM-ESRA. (c) CIM-McClear.

Figure 7: Estimates vs ground measurements for the site adapted Heliosat-4 (left), and the cloud index models based on ESRA (center) and
the site adapted McClear (right) for all sites. The colour scale indicate the concentration of the samples in the scatter plot.
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ditions, a small underestimation bias is observed in both848

CIMs. Also, a different behaviour is observed at low irra-849

diation between the site-adapted and the locally adjusted850

models, with a small overestimation tendency for the for-851

mer. For high irradiation values, the CIM-ESRA model852

present limitations, as it can be seen in the upper right853

side of Figure 7b. This is a consequence of using the ESRA854

clear-sky model as basis with an average yearly TL cycle.855

To throw some light on the specific shortcomings of856

each model under the different conditions, their perfor-857

mance indicators are discriminated by clearness index, kT =858

GHI/GHIo (where GHIo is the extraterrestrial solar ir-859

radiation at a horizontal plane at the top of the atmo-860

sphere) and by the cosine of the solar zenith angle, cos θz861

(Iqbal, 1983). The resulting diagrams help to visualize862

the distribution of the deviations in terms of sun eleva-863

tion and cloudiness condition. Figure 8 shows the rMBD864

and rRMSD diagrams for the site-adapted Heliosat-4 and865

the CIM-McClear at the LE site. The corresponding dia-866

grams for the original Heliosat-4 and CIM-ESRA estimates867

are similar and are omitted for brevity. The comparison868

is intended to compare the deviations of locally adapted869

models that have a different nature and use different satel-870

lite inputs. Upon inspection of this figure, the metrics’871

patterns observed are different, and a better performance872

across all-sky conditions is evident for the CIM-McClear873

model. The rMBD of this model remains small for all the874

conditions (between ' ±8%) and the higher deviations875

(rRMSD ' 20-25%) occur around solar noon for partial876

cloudiness conditions (intermediate kT values). The small877

overall underestimation bias observed in the model can be878

associated to clear-sky conditions and, to a minor extent,879

to cloudy conditions close to solar noon (see Figure 8b).880

When the Sun is low, the discriminated performance of881

both Heliosat-4 and CIMs are similar (low rMBD and882

rRMSD) for all cloudiness condition. However, when the883

Sun is high, the behavior changes, and errors associated to884

clouds are much higher for the Heliosat-4 method (see for885

instance, the ' +40% rMBD observed under this condi-886

tion for this model). In fact, the rRMSD for cloudy condi-887

tion (kT < 0.4) at high Sun’s elevation angle (cos θz > 0.8)888

are around 35-50% for Heliosat-4 and around 10-25% for889

the CIMs. This different behavior is related to the satel-890

lites’ FOV: under this condition the optical path of the891

MSG satellite observation differs strongly from the optical892

path of the solar radiation through the atmosphere, which893

is not the case for the GOES-East satellite observation.894

In particular, midday clouds are worse perceived by the895

MSG satellite, resulting in higher overestimation (positive896

bias) and uncertainty (higher rRMSD) for the Heliosat-4.897

Further, as these higher deviations occur at midday when898

solar applications produce the most, they have an impor-899

tant impact in solar yield assessments. Based on this, it900

is clear that GOES-East satellite imagery, which has a901

smaller viewing angle for the region, is a better choice for902

local solar resource assessment.903

The performance observed for the original Heliosat-4904

GHI estimates is consistent with those found in the litera- 905

ture about the Heliosat family (Rigollier et al., 2004; Eissa 906

et al., 2012; Ineichen, 2014; Eissa et al., 2015a; Qu et al., 907

2017) and it is between the expected uncertainty range for 908

satellite-based models (Perez et al., 2013). As an example, 909

in Ineichen (2014) a long term (8-years) uncertainty evalu- 910

ation of the Heliosat-3 model (among other satellite-based 911

models) was reported over 18 high quality measurement 912

sites in Europe. A negligible bias and an rRMSD of 20% 913

was found for the hourly estimates. The evaluations re- 914

ported in the literature use the single pixel approach, so 915

the hourly uncertainty showed here is lower due to the 916

spatial smoothing. Also, most evaluations do not report 917

the uncertainty of site-adapted versions. As mentioned 918

previously, the evaluation of the Heliosat-4 method (not 919

site adapted) on a hourly basis is provided by the CAMS 920

website for several sites across the world. Two of these 921

sites are close to the region (Buenos Aires and Florianópo- 922

lis) but not representative of the broader Pampa Húmeda 923

area. Reported rMBD for these sites are between −5-0% 924

and the rRMSD values are between 25-28%. The biases 925

reported in this work for the original Heliosat-4 method 926

are in the same range, being the maximum overestimation 927

+11.1 Wh/m2 or +2.6% (for the oceanic RO site) and 928

the maximum underestimation of −14.4 Wh/m2 or −3.1% 929

(at the LU site). The average RMSD found here for the 930

Pampa Húmeda region is significantly lower, but consid- 931

ering spatial smoothing, and is of 80.2 Wh/m2 or 17.9%. 932

Site adaptation reduces slightly the RMSD to 75.2 Wh/m2
933

or 16.8%. The value of the site-adaptation procedure for 934

the region is quantified in a 1.1% reduction in rRMSD, 935

which is significant, but not enough to achieve the reduced 936

rRMSDs of 12-13% of the CIMs presented here due to the 937

lower GOES-East satellite FOV in the region. 938

The JPT and BDJPT empirical models have been ad- 939

justed and evaluated for the same region in Alonso-Suárez 940

et al. (2012), using GOES-East satellite images with the 941

same spatial smoothing as here. In that work, 3 stations 942

are used for models adjustment (LE, TT and LB) and 4 943

stations are used for validation. None of the validation 944

sites is any of the sites used in this work. At the hourly 945

level, a small overestimating bias of +1.4% and +1.1% 946

was obtained for each model, respectively. In terms of 947

RMSD and KSI, the overall results for the JPT model 948

(rRMSD = 18.6% and KSI = 16 Wh/m2) are similar 949

to those of the original Heliosat-4 (being the former lo- 950

cally adjusted) and the results for the BD-JPT model 951

(rRMSD = 14.0% and KSI = 10 Wh/m2) are slightly 952

above those of the CIMs considered here. Further perfor- 953

mance evaluations between these models (using the same 954

data set) are required, in order to have a fair comparison 955

between alternative models for this region. However, this 956

is not under the scope of the present work. 957
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(a) Relative MBD: original Heliosat-4 estimates. (b) Relative MBD: CIM-McClear estimates.

(c) Relative RMSD: original Heliosat-4 estimates. (d) Relative RMSD: CIM-McClear estimates.

Figure 8: Performance metrics for the LE site discriminated by clearness index kT and the cosine of the solar zenith angle for the site-adapted
Heliosat-4 and the CIM-McClear estimates. The gray cells represent the absence of data for that condition. The values are relative to the
measurements mean.

5. Conclusions958

Different types of satellite-based models for estimating959

ground level solar global horizontal irradiation have been960

assessed at the hourly level using good quality ground data961

from 10 sites in the southeastern part of South America962

(Pampa Húmeda region). This region has simultaneous963

geostationary satellite coverage from the Meteosat Sec-964

ond Generation (MSG) and from the GOES-East satel-965

lites, with significantly different view angles over the area966

and thus provides an opportunity to quantify the effect of967

large view angles on the quality of the estimates.968

The McClear and ESRA models have been considered969

for clear-sky estimation in the area. McClear estimates970

have been compared to clear-sky ground data with and 971

without site-adaptation. The ESRA clear-sky model has 972

been implemented using a daily Linke turbidity cycle which 973

captures the average seasonal trends of the local atmo- 974

sphere (this model does not use satellite information). When 975

compared to hourly clear-sky ground data both show a 976

similar performance, with small biases and rRMSDs in 977

the range ' 3% - 4% of the measurement’s average, which 978

is similar to the ground measurement’s uncertainty. Mc- 979

Clear (even without site-adaptation) performs slightly bet- 980

ter than the ESRA clear-sky model, due to its capacity to 981

model the detailed atmospheric conditions on a daily basis. 982

The site-adapted version of McClear performs best, result- 983

ing in unbiased estimates with 2.8% of rRMSD. However, 984

14



the gain obtained from site-adaptation is small, 0.4% of985

rRMSD. To resolve between higher accurate clear-sky es-986

timates requires pyrheliometer ground data accurate to 1%987

and is left for future work.988

The estimates from these clear-sky models have also989

been compared (one to the other) under all-sky conditions990

of the real atmosphere, which is uncommon in clear-sky991

models assessments. This comparison revealed a signifi-992

cantly different behavior of both models: when clouds are993

present in the real atmosphere, McClear estimates are sys-994

tematically lower than ESRA’s. This is best quantified by995

the mean deviation between both estimates, which is 0.1%996

for clear-sky conditions and becomes -5.2% in the pres-997

ence of clouds (i.e. McClear estimates are about 5% lower998

than ESRA’s). This different behaviour is due to the fact999

that McClear is sensitive to the short-term atmospheric1000

variability (in particular, regarding water vapor content),1001

while our implementation of ESRA is not. Since both are1002

commonly used clear-sky models, this may be relevant in-1003

formation for CIM-based all-sky models, short-term fore-1004

casting, automated quality control or other applications1005

that make use of a clear-sky index.1006

For all-sky conditions, the Heliosat-4 (HS4) method1007

and two CIMs (cloud index methods) have been consid-1008

ered. A first representative assessment of the HS4 method1009

for the Pampa Húmeda region is provided, with and with-1010

out site-adaptation. This model is based on the McClear1011

clear-sky model and MSG images. The two CIMs share the1012

same formulation for the locally adapted cloud attenuation1013

factor based on the cloud index derived from GOES-East1014

satellite information. One of them (CIM-ESRA) is based1015

on the ESRA clear-sky model and the other (CIM-McClear)1016

on the site-adapted McClear model. The major difference1017

in the satellite images used by both approaches is the satel-1018

lite view angle over the region. Similar spatial smooth-1019

ing and local-adaptation are applied to both, by different1020

means.1021

The HS4 estimates as provided by the CAMS-SoDa1022

platform have the expected performance for a model with-1023

out local adaptation but with spatial smoothing, showing1024

small bias and rRMSDs in the range 16.6% - 20.4% (av-1025

erage 17.9%) across stations. The site-adapted version of1026

HS4 improves slightly this performance, showing no bias1027

and rRMSD between 15.4% and 19.6% (average 16.8%).1028

The overall gain in rRMSD due to site-adaptation is 1.1%1029

under all-sky conditions. The implemented CIMs exhibit1030

a small but consistent negative bias of about −1%, so a1031

site-adaptation post-processing can be of practical rele-1032

vance for these estimates. The rRMSD is in the range1033

10.6% - 13.6% for CIM-McClear and 11.2% - 13.6% for1034

CIM-ESRA. CIM-McClear has slightly smaller rRMSDs1035

than CIM-ESRA, with averages of 12.1% for the former1036

and 12.5% for the latter. These results for the locally ad-1037

justed CIMs are comparable to the best results found in1038

the literature and similar to those found for an empirical1039

model optimized for Uruguay’s territory (BD-JPT model).1040

However, the empirical nature of this model implies that1041

its generalization to all the Pampa Húmeda area or other 1042

areas of the continent is not straightforward, since its co- 1043

efficients present more spatial variability than the param- 1044

eters used for local adaptation in this work. These CIMs 1045

represent a significant improvement for satellite-based so- 1046

lar resource assessment over the extended region. 1047

This all-sky assessment implies that the satellite view 1048

angle over the area must be taken into account when es- 1049

timating ground level solar irradiation: relatively simple 1050

CIMs using lower view angle satellite information outper- 1051

form the sophisticated Heliosat-4 method which uses de- 1052

tailed atmospheric information and radiative transfer cal- 1053

culations. The MSG satellite views the region with a view 1054

angle of approximately 70◦, while the GOES-East satel- 1055

lite has a viewing angle over this area of about 40◦. It 1056

is shown that the impact of using satellite-based estima- 1057

tion out of the recommended area (satellite zenith angle 1058

larger than 60◦) can easily account for the performance 1059

difference between MSG-based and GOES-based models 1060

observed over this region. For low solar altitude, both 1061

CIMs and HS4 present similar uncertainty for all cloudi- 1062

ness conditions. However, for high solar altitude, when 1063

the radiation optical path in the atmosphere is similar to 1064

that of the GOES-East but very different to that of the 1065

MSG, significantly higher errors can be observed for the 1066

HS4 model especially when partial cloudiness is present. 1067

Hence the performance difference is mostly explained by 1068

the satellites’ cloud perception when the Sun is close to 1069

the zenith, which is directly related to each satellite FOV. 1070

The performance difference presented here should be read 1071

as an example of impact assessment of using solar satel- 1072

lite estimates out of the recommended area and is not a 1073

statement about the relative quality of the models. 1074

In sum, the site adapted McClear clear-sky model is 1075

highly accurate in this region, but caution should be taken 1076

when using its estimates under all-sky conditions because 1077

it is sensitive to changes in atmospheric conditions under 1078

cloudy conditions. The ESRA model with local average TL 1079

trends also gives good results for the region and it is insen- 1080

sitive to the presence of cloudiness in the real atmosphere. 1081

For all-sky estimates, it is not recommended to use MSG- 1082

based models over this area (even with site adaptation), 1083

due to the higher view angle and the associated decrease in 1084

accuracy. Both CIMs, based on GOES-East satellite im- 1085

ages show a remarkable performance over this region, pro- 1086

vide accurate hourly estimates for global solar irradiance 1087

and have the potential to be extended to a broader area. 1088

Furthermore, they can potentially be adapted to provide 1089

DNI estimates or, combined with spectral clear-sky mod- 1090

els, provide spectral estimates for global irradiation. 1091
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