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Abstract7

Solar forecasting provides valuable information for grid management. Satellite-based forecasting tools ac-

count for the short-term intra-day time horizons, typically outperforming numerical weather predictions up

to 4-5 hours ahead. The method consist of three separated stages, namely, cloud motion estimation, motion

extrapolation and satellite-to-irradiation conversion. In this work we compare different satellite-based pro-

posals for hourly irradiation forecast up to 5 hours ahead using a 2-years data set. The widely-used Lorenz’s

block matching technique and four optical flow (OF) algorithms are assessed, both at image and irradiation

levels. All the methods are locally optimized to obtain their peak performance. It is found that the OF

algorithm which combines an L1 data penalty term on the optical flow equation with total variation regular-

ization (TVL1) outperforms the rest. Different image extrapolation approaches and spatial smoothing are

also tested. It is found that changing the extrapolation technique does not have much impact in the overall

performance and that important gains can be obtained by optimally smoothing the predicted images pre-

vious to solar irradiation conversion. By doing this, all methods outperform the exigent convex persistence

benchmark, achieving positive forecasting skills. The tests are performed using GOES-East satellite images

of south-east South America, and the methods’ optimal parameters are given.

Keywords: Solar irradiation forecast, CMV, GHI, GOES satellite, optical flow.8

1. Introduction9

Solar forecasting is a key requirement to optimally manage solar power resources and, therefore, to in-10

crease the solar energy share in the electricity mix. The predictions provide an informed decision-making11

framework for an efficient energy dispatch, reducing costs associated with solar energy variability, sup-12

ply/demand balance and back-up generation. The intra-day hourly forecast horizons are covered by Numer-13

ical Weather Predictions (NWP) and satellite-based predictions, being the latter a lower uncertainty option14

for the first time steps, typically up to 4-5 hours ahead (Kühnert et al., 2013; Perez and Hoff, 2013). The15
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predictions in these time horizons are especially useful for load following applications and electricity market16

transactions (Diagne et al., 2013; Antonanzas et al., 2016).17

Satellite-based solar forecasting uses visible channel geostationary satellite images due to two main18

reasons. The first one is that cloudiness is easily distinguishable in these images, as clouds reflect more solar19

irradiance to the outer space than the ground, thus appearing brighter in the visible channel. This is not valid20

for areas with high albedo terrain, like snow areas or salt flats, where a special treatment is required, typically21

by also using infrared images (Perez et al., 2013; Dise et al., 2013). The second one is that the images’ high22

time rate (between 30 and 10 minutes) and moderate spatial resolution (between 500 m and 1 km) allow to23

track the clouds’ movement in time by means of estimating their Cloud Motion Field (CMF) or Cloud Motion24

Vectors (CMV). The CMV is then used to extrapolate the clouds’ motion into the near future (from 1 to 5-625

hours ahead), predicting the next images, i.e. the future position of clouds. Finally, to obtain the ground26

level solar irradiation prediction, a satellite-based assessment model (Perez et al., 2002; Rigollier et al., 2004;27

Alonso-Suárez et al., 2012; Qu et al., 2017; Laguarda et al., 2020) is applied to each predicted image in each28

time horizon. Satellite forecasting is a challenging task as clouds not only move, but also form, change29

their shape and vanish, due to complex atmosphere dynamics that the method does not attempt to model.30

Also, as the CMV is a two-dimensional (x, y) vector field, the z axis is neglected, implicitly assuming that,31

locally in space, the cloudiness is at the same altitude plane. This makes the baseline techniques incapable32

of capturing any phenomenon involving vertical motions of clouds, in particular, the complex convection33

processes. Further assumptions may be added by the CMV estimation technique to deal with the motion34

estimation in the images’ sequence. Despite these simplifications, satellite-based forecasting techniques have35

proved to be a solution for the 1-5 hours ahead time horizons, outperforming NWP and reference persistence36

procedures, and are usually included in solar forecasting products of specialized companies (Perez and Hoff,37

2013).38

The key part of solar satellite forecasting is the estimation of the CMV. The main technique used for39

this is the Lorenz et al. (2004) method, which is a block matching algorithm similar to the Particle Image40

Velocimetry (PIV) technique (Adrian, 1991), widely-used to estimate motion in fluids dynamics. This41

method uses two consecutive images and estimates the cloud displacement at an image pixel by comparing42

its surrounding rectangular area (in the current image) with the neighbouring rectangular areas in the43

previous image, inside a bigger search area. The area that presents the highest similarity with respect to the44

original one is selected, and the motion vector corresponding to the displacement is assigned to the pixel. A45

similarity metric for this can be the Root Mean Squared Deviation (RMSD), among others. The procedure is46

repeated for a set of pixels in the image to avoid the high computational cost of this search. This method (and47

variations) have been evaluated in several parts of the world accounting for different climates (Perez et al.,48

2010; Kühnert et al., 2013; Cros et al., 2020; Giacosa and Alonso-Suárez, 2020; Yang et al., 2020b; Pereira49

et al., 2020). Other CMV estimation techniques have been analyzed (Peng et al., 2013; Cros et al., 2014;50
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Nonnenmacher and Coimbra, 2014; Urbich et al., 2019; Kallio-Myers et al., 2020), including phase correlation51

and Optical Flow (OF) algorithms. Among the OF variations, the Lucas and Kanade (1981), Horn and52

Schunck (1981) and Farnebäck (2003) methods have been used and, recently, also the TVL1 algorithm (Zach53

et al., 2007; Urbich et al., 2019). Some of these methods directly obtain a dense motion estimation (i.e. at54

each image pixel) while others rely on a spatial neighbourhood around each pixel. This second category55

typically obtains a sparse motion estimation to avoid high computational costs, and requires an a posteriori56

interpolation of the motion field, in the same way as the block-matching algorithm. Comparisons of these57

algorithm’s performance to forecast satellite albedo (or cloud index) and solar irradiation are rarely found in58

the literature, especially those with extended data sets. For instance, Cros et al. (2014) found that the Lucas59

and Kanade OF method outperforms the block-matching and phase correlation algorithms, tested with a60

6-days data set of cloud index MSG images of western France and northern Spain. There also exist hybrid61

methods that blend either the satellite images or the CMV with NWP. This may be done by advecting the62

satellite images using NWP procedures or NWP wind fields information (Arbizu-Barrena et al., 2017; Miller63

et al., 2018; Wang et al., 2019), by combining the CMV with the NWP wind fields previous to advect (Harty64

et al., 2019) or by merging the solar prediction from both techniques (Perez et al., 2014), among others65

strategies. Either as part of a hybrid system or as a standalone methodology, satellite CMV estimation has66

become an integral part of intra-day cloudiness or solar irradiation forecast.67

In this work we provide a detailed performance comparison between the block-matching method and68

four OF techniques, namely, Lucas and Kanade (1981), Farnebäck (2003), Horn and Schunck (1981) and69

TVL1 algorithms, to forecast satellite reflectance (satellite albedo) and hourly solar global irradiation at a70

ground-level horizontal surface (GHI). These methods are selected by their relevance, either for historical,71

practical or scientific reasons. There are no previous works comparing the cloudiness and solar forecasting72

performance using such many satellite-based techniques. It represents a two level comparison that addresses73

cloudiness at image level (using all image pixels except for a small frame around it, to avoid artifacts)74

and at solar irradiation level at specific measuring sites. The evaluation is done against a 1-year data75

set of 30-minutes GOES-East satellite images and controlled-quality GHI measurements, accounting for a76

large time-span in comparison to previous works. This allows for a full characterization of these methods77

performance and a fair comparison between them. The region under study is the south-east of South78

America, which includes Uruguay, most of the Argentinian territory, southern Brazil and Paraguay, and is79

characterized by challenging mesoscale convective systems (Salio et al., 2007; Rasmussen et al., 2014; Pal80

et al., 2021) and intermediate solar resource short-term variability (Alonso-Suárez et al., 2020). The findings81

of this article shall also apply to similar climates, especially intermediate solar variability areas where partly82

cloudy conditions are frequent. In addition, the five methods are optimized for the region by using an83

independent 1-year satellite data set. This article also provides the optimal parameters for their utilization84

in this region, which may be extrapolated, as said before, to other regions with similar climate conditions.85
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We also inspect different mechanisms to perform the image extrapolation and the role of spatial smoothing86

in the predicted images to better account for hourly irradiation forecast. Both procedures have been rarely87

addressed in the literature. In particular, image extrapolation to large forecast horizons (i.e. 10 time steps88

in the future) is not a common computer vision problem and it has several limitations when using a static89

CMV, as is the case of state-of-art satellite cloudiness and solar irradiation forecasting systems.90

This article is organized as follows. Section 2 describes the satellite and solar irradiation data sets.91

Section 3 presents the methods being used for the CMV estimation, the characteristics of these methods’92

training and the solar irradiation model. Section 4 briefly presents the forecast performance metrics to be93

used in the evaluation. Results are presented in Section 5, including the methods’ optimal parameters, the94

performance assessment and comparison, and the findings in relation to image extrapolation and spatial95

smoothing. Finally, Section 6 summarizes the main conclusions of this work.96

2. Data97

This work is based on two data sets: GOES-East geostationary satellite images and GHI ground mea-98

surements. A 2-years period of GOES-13 satellite images are used, which correspond to years 2016 and99

2017. The data from year 2017 is reserved for algorithm training while the year 2016 is used for evaluation.100

In the same line, hourly GHI measurements of 2016 are considered, as ground measurements are used here101

for evaluation purposes (i.e. none of the methods’ parameters training rely on ground data, but only on the102

satellite images). The following two subsections describe the satellite images and GHI measurements.103

2.1. Satellite images104

Figure 1 shows the spatial domain of the GOES-East visible channel satellite images being used. The105

region includes most parts of central and north Argentina, Uruguay and south Paraguay and Brazil (south-106

east of South America). The majority of this area is classified as Cfa (warm, temperate and humid, with hot107

summers) in the updated Köppen-Geiger climate classification (Peel et al., 2007), region known as Pampa108

Húmeda. As mentioned in the introduction, the region is known for frequent mesoscale convective systems109

which, being the region subtropical, are larger in size and lifespan than the tropical ones. These convective110

systems tend to peak during daytime over Uruguay and south Brazil (Salio et al., 2007), hence affecting111

ground level solar irradiation and producing complex daylight cloud patterns. Figure 1 also illustrates a112

typical GOES-East albedo image (satellite Earth’s reflectance, ρ) in which clouds appear brighter that the113

background (soil, ocean, rivers, lakes, etc.) as they reflect more Sun’s radiation to outer space.114

For this work we use the GOES-13 albedo images with the calibration procedures recommended by115

NOAA (Wu and Sun, 2005). During the period 2016-2017 this satellite acquired images with a typical rate116

of two per hour and a nominal space resolution of 1 km. The satellite’s location in geostationary orbit,117
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75◦W, results in a variable pixel size of about ' 1-2 km over the region. The original image in irregular118

satellite projection is converted to a 0.015◦×0.015◦ latitude-longitude regular grid by a simple pixel averaging119

procedure. This is then the effective spatial resolution of the images being used, which have a final resolution120

of 1397× 1467 px. Only sector images separated by ∆t = 30 minutes are considered, discarding for instance121

full-disk images which have a ∆t = 7 minutes with their previous sector image. By doing this, the temporal122

support of the satellite images is fixed in equally spaced 30 minutes time-steps, with some daylight gaps123

that result from the operational regime of the satellite for South America. These gaps are not considered124

for algorithms’ training or evaluation. Also, only images in which all pixels have at least a solar altitude of125

' 7◦ are considered (cosine of the solar zenith angle higher than 0.1) and some images are discarded due to126

missing pixels (image acquisition/transmission problems). This procedure results in a daylight data set of127

7903 images for the year 2016 and 7794 images for the year 2017, which are going to be used for algorithms’128

testing and training respectively.129

(a) Location of the satellite’s footprint. (b) Example of GOES-East visible channel image.

Figure 1: Location and example of the GOES-East satellite images being used, illustrating the spatial domain of this work.

2.2. GHI ground data130

Six GHI measuring sites located at the center of the images’ footprint are used. These sites correspond131

to the Solar Energy Laboratory (LES, http://les.edu.uy/) measurement’s network in Uruguay; they are132
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located in rural or semi rural areas and are representative of the broader Pampa Húmeda region. The solar133

irradiance 10-minutes variability in these sites is of σ ' 0.15 (Marchesoni-Acland and Alonso-Suárez, 2020),134

a dimensionless variability metric calculated as the standard deviation of the 10 minutes clear-sky index135

(kc) changes (Perez et al., 2016) using the McClear clear-sky model for the kc calculation (Lefèvre et al.,136

2013). This corresponds to an intermediate short-term solar variability, typical of climates with frequent137

partly cloudy conditions.138

The measuring sites are presented in Table 1. One of these sites is the LES experimental facility139

(station code LE) in north-western Uruguay. The GHI measurement in this site is acquired by a Kipp &140

Zonen SOLYS2 ground measurement station with spectrally flat Class A pyranometers according to the ISO141

9060:2018 standard. As this site is located in a specialized solar assessment lab with dedicated technical142

support, routine maintenance of the station is performed on roughly a daily basis, including dome cleaning143

and horizontal plane check. The other five sites correspond to a field measurement network administrated by144

LES, where spectrally flat Class A or B pyranometers are used. These stations are located in measurement145

fields of the National Agronomic Research Institute (INIA, Uruguay) or the National Weather Institute146

(INUMET, Uruguay), and maintenance is done approximately on a monthly basis by the local operators.147

All measurements are registered with a 1 minute time rate as an average of 15 seconds samples. The148

pyranometers are calibrated every two years by the LES following the ISO-9847:1992 standard (Abal et al.,149

2018) using as reference a Secondary Standard Kipp & Zonen CMP22 pyranometer, which is kept with150

traceability to the World Radiometric Reference (WRR). Based on the equipments’ quality, maintenance151

routine and calibration, we assign a P95 uncertainty of 3% of the average for the GHI daily measurements152

at the LE site and of 5% in the others. These uncertainties are significantly lower than the uncertainty of153

the forecast being evaluated.154

The GHI 1-minute data are quality inspected by eliminating the samples tagged as erroneous (i.e. mal-155

function periods or maintenance days) and by using the BSRN limits for atypical and physically impossible156

values (McArthur, 2005). After this procedure, the data is hourly integrated using the satellite timestamps157

as temporal support. That is, for each satellite timestamp, the hourly values for 1 to 5 hours ahead are158

computed. The choice of the hourly forecast horizons is based on the fact that we have a detailed uncertainty159

assessment of the hourly solar satellite estimates in the region that use images from the previous GOES-East160

generation (Laguarda et al., 2020; Alonso-Suárez, 2017), providing a reference uncertainty level for this work161

and also adjusted tools for satellite-to-irradiation conversion at an hourly time basis. We shall recall here162

that during 2016-2017 period the GOES-13 provided 30-minutes images for South America with timestamps163

typically at 8 and 38 minutes, with an irregular acquisition. Only data with solar altitude greater than 7◦164

are considered. Table 1 shows the amount of hourly samples used for evaluation at each site (for 1-hour165

ahead, as example) and their average, which will be used for performance metrics’ normalization.166
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Table 1: Location of the GHI measuring sites. The last two columns show, respectively, the amount of quality-inspected hourly

samples that compose the final data set and the measurements average in each site (for performance metrics normalization).

station station latitude longitude altitude samples Gh

name code (deg) (deg) (m) (hours) (Wh/m2)

LES Experimental Facility LE −31.28 −57.92 60 3065 411.7

LES Rocha RC −34.49 −54.32 30 3324 394.6

INIA Las Brujas LB −34.67 −56.34 37 3320 398.2

INIA La Estazuela ZU −34.34 −57.69 70 3349 405.6

INIA Tacuarembó TA −31.71 −55.83 142 3355 402.7

INUMET Artigas AR −30.40 −56.51 121 3378 423.3

3. Methods167

In this section we describe the five methods considered for CMV estimation, their local optimization168

strategy and the satellite-to-irradiation model to convert the predicted images to hourly solar irradiation169

predictions at the given measuring sites.170

3.1. CMV estimation171

The CMV is defined by a (u, v) vector field that represents the motion of clouds at each pixel (x, y) in a172

sequence of two consecutive images. The objective of this estimation is to find the two scalar fields u(x, y) and173

v(x, y) that describe each component of the vector field across the x and y directions, respectively. Clouds174

are the only Earth’s atmosphere moving object in geostationary satellite images, so motion estimation175

algorithms can be applied directly to these images to derive the CMV. Due to the anisotropic reflection176

of solar radiation in the Earth-Atmosphere system, the Sun’s apparent movement is also observed in the177

albedo images. This second order but noticeable spatial change in the albedo may introduce artifacts in178

the motion estimation, and is considered here as part of the methods’ uncertainty. Block-matching and OF179

techniques are the main two types of CMV estimation methods reported in literature. To estimate objects’180

motion, both approaches assume that their brightness in the observed frames is preserved. Typically, given181

a rectangular window or block in an sequence frame, the block-matching procedure consists in identifying182

its most similar block in a neighbouring position in the next frame. Then, assuming that these two blocks183

correspond to the same object acquired at consecutive frames, the projected object’s motion is computed184

as the displacement vector between both blocks. Different block similarity metrics can be considered, the185

most popular being the L2 or L1 norm between its pixel values.186

In computer vision, motion field estimation methods based on OF first appeared in the early 80s and it187

is still a fundamental problem. In OF methods, the objects’ brightness preservation in time is considered188
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at the pixel level, and the time between consecutive frames is assumed to be short enough to consider that189

the objects perform infinitesimal motions. More precisely, if I(x, y, t) represents an image sequence, and190

(dx, dy) and dt represent differentials in space and time respectively, the brightness constancy assumption191

I(x, y, t) = I(x+ dx, y + dy, t+ dt) leads to the so called optical flow equation (Horn and Schunck, 1981),192

Ix · u+ Iy · v + It = 0, (1)

where Ix and Iy denote the spatial derivatives of I(x, y, t), and It its time derivative. The use of this193

equation for each image pixel is an underdetermined linear problem, so the different approaches to solve194

Eq. (1) constraint the motion field to be smooth or regular in some sense. These constrains can be local195

in space (Lucas and Kanade, 1981; Farnebäck, 2003) or impose regularity by penalizing non-smoothness196

via a cost function across the image (Horn and Schunck, 1981; Zach et al., 2007). These second kind of197

approaches are formulated as variational problems and are solved using a discretized version of the Euler-198

Lagrange equation. The choice of one or another formulation is problem dependent, as the added constrains199

and/or the selected penalization functions should be in accordance to the motion scene characteristics and200

the error probability distribution that result from the residuals of Eq. (1) application (Sun et al., 2008),201

called data error. The requirement of dense or sparse motion estimation, or the uncertainty introduced by202

interpolation techniques to convert the latter into the former, also affects the choice.203

The classical Lucas and Kanade and Horn and Schunck formulations impose the OF constraint using the204

L2 norm as data penalty term. This choice leads to a convex and differentiable optimization problem, but205

make these methods non robust to outliers (which are inherent to the problem), allowing the larger ones to206

have an important effect in the motion estimation even being few. Furthermore, the L2 norm is more suitable207

for Gaussian data errors (Sun et al., 2008). Black and Anandan (1996) introduced the robust estimation of208

OF, by proposing the utilization of differentiable but non convex norms, associated with different type of209

data error distribution (i.e. Lorentzian distribution), in which outliers weight less in the optimization. The210

non convexity requires sophisticated and time consuming iterative methods to obtain the motion estimation.211

The previous discussion applies mostly to the data term, namely, how well Eq. (1) is fulfilled, both in212

local and variational approaches. The addition of constrains can also be done, as said before, by imposing213

regularization. This can be included by adopting a regression model for each pixel neighbourhood (Black214

and Anandan, 1996) or by penalizing large gradients in the (u, v) field, leading to smoother solutions. This is215

indeed done by the Horn and Schunck method using an L2 norm on the motion field gradient. An attractive216

option to penalize (u, v) gradients across the image is the Total Variation (TV) regularization (Rudin217

et al., 1992), which better preserves discontinuities in the motion field. The popularization of efficient218

computational techniques to solve non-differentiable convex optimization problems (Chambolle, 2004) has219

led to robust OF variational approaches that use the TV regularization for the motion field gradients and220
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the L1 norm for the data term, leading to the TVL1 model (Zach et al., 2007; Sánchez et al., 2013). This221

up-to-date technique provides a computationally fast framework for motion estimation, which is less sensitive222

to outliers and can recover piece-wise smooth motion vector fields preserving its discontinuities. Finally, it223

is worth noting that OF algorithms offer the utilization of down-scaling levels (M) to solve the dense motion224

estimation from lower to higher resolution images, a multi-level pyramid strategy that has proved to be best225

performing for large displacement fields (Wedel and Cremers, 2011; Sánchez Pérez et al., 2013).226

In this context, we shall consider some of the OF methods to test, based on the recent advances in this227

field, their previous utilization for solar forecast and practical relevance, for instance, the availability of228

easily accessible open source algorithms. With all these in consideration, we selected two locally-constrained229

approaches, the Lucas and Kanade and Farnebäck methods, and two-variational approaches, the Horn and230

Schunck method and the Sánchez et al. implementation of the TVL1 algorithm (Zach et al., 2007). We231

will call them, respectively, LK, FRB, HS and TVL1. With this choice, we address the classical methods232

(LK and HS), a robust approach (TVL1) that is expected to perform similar or better to other more233

complex robust methods and practical methods previously assessed in the solar forecasting context (which234

includes the FRB). All of them have freely available open source implementations in python and/or C235

languages. The implementations of this work result in dense motion estimations composed of non-integer236

displacements, either due to the algorithms’ nature or due to a posterior interpolation that converts a sparse237

motion estimation into a dense one. In the following subsections each method is briefly described.238

All these algorithms offer a set of parameters that can be optimized. Some of these parameters refer239

to each method’s formulation and other to their computational implementation. In this work we address240

the optimization of two parameters for each methodology, based on their a priori relevance. This decision241

is made by considering the previous knowledge of each method. We favour this approach in opposition to242

a full black-box optimization approach, as a way to understand the impact of each selected parameter in243

the forecasting performance (Subsection 5.1). For instance, the down-scaling levels M will be one of the244

optimized parameters for the OF algorithms, as it represents a common ground of analysis for them. The245

second parameter will be the most important method-specific value to tune, as explained in each subsection246

below. The rest of the parameters will be set as the default or recommended values for each methodology.247

3.1.1. Lucas-Kanade method248

The LK method determines the (u, v) values at each pixel by considering a constrain inside a rectangular249

window W centered on it. In the standard LK method this constraint forces the values of (u, v) to remain250

constant within the window, yielding an over-determined problem with no direct solution, but whose least251

mean square solution can be found by solving the following minimization problem for each pixel:252

arg min
u,v

{∫
W

(Ix · u+ Iy · v + It)
2

}
. (2)
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If the texture of the neighbourhood W allows to solve the indetermination (satellite images comply with253

this), the solution to this problem for each window is unique and allows to estimate a dense motion field. We254

call this method LK-avg and implement it with the CalcOpticalFlowLK function of the OpenCV 2.x python255

libraries. This function does not have embedded the multi-level pyramid strategy, so it was implemented by256

us using the expand and reduce functions of the OpenCV library.257

Another way to impose a motion field constrain under the Lucas and Kanade framework is to use an258

affine transformation, in which (u, v) must approximate a parametric function within the region (not just a259

constant value) in the form (u, v) = f(x, y, p), where p represents the parameters. In such case, Eq. (2) is260

adapted to find the p optimal parameters in each neighbourhood:261

arg min
p

{∫
W

(∇I · f(p) + It)
2

}
, (3)

where ∇I = (Ix, Iy) denotes the image gradient. We call this method LK-afn and for its implementation we262

use the calcOpticalFlowPyrLK function of the OpenCV 3.x python libraries (Bouguet, 2000).263

The two main parameters to tune locally for these two methods are the window length w (in pixels)264

and the down-scaling levels M , which will be optimized for the region. As square regions are considered, it265

follows that the amount of pixels in W is w2. The other function’s parameters, such as stopping criteria,266

iterations, etc., are set as default. Although these two variations of the LK method are based on a pixel267

neighbourhood, their computational implementation provide a dense motion estimation. This is done by268

performing the estimation at each pixel in the image with an overlapping one-pixel displaced spatial window.269

3.1.2. Farnebäck method (FRB)270

Farnebäck (2003) proposed an OF method based on a second order polynomial expansion of the neigh-271

bourhood of each pixel. This proposal is intended to deal with noisy sequences, for instance, sequences272

with high frequency variations in the CMV. Satellite images are prone to noise in the signal processing273

sense (Peng et al., 2013), hence this technique is an attractive option. The displacement of the polyno-274

mial expansion leads to a Lucas-Kanade-like minimization within each neighbourhood, given in Eq. (12)275

of Farnebäck (2003). This technique has been previously used for satellite solar forecasting in Kallio-Myers276

et al. (2020) and can provide a dense motion estimation without a high computational cost and without277

using interpolation techniques. The Farnebäck method is included in the python OpenCV 3.x libraries,278

calcOpticalFlowFarneback, and was used in this work. The available algorithm also includes a weighted279

Gaussian minimization in which central pixels in the neighbourhood are assigned higher importance. The280

algorithm has several parameters which can be locally tuned, from which we selected the window length w281

and the down-scaling level M , as we think these are the two more problem-specific (local adaptation with282

GOES-East satellite images) parameters. The other function’s parameters are set as recommended in the283

OpenCV documentation website: pyr_scale=0.5, poly_n=5 and poly_sigma=1.1.284
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3.1.3. HS method285

The Horn and Schunck variational method obtains the (u, v) vector field that minimizes the following286

convex and differentiable cost function across the whole image I:287

arg min
u,v

{∫
I

(∇u)2 + (∇v)2 + λ · (Ix · u+ Iy · v + It)
2

}
. (4)

The cost function consists of two terms: (i) a regularization term on the L2 norm of gradients ∇u and288

∇v, which promotes smoothness on the CMVs, and (ii) a data misfit term that enforces the OF constraint.289

The parameter λ controls the trade-off between these two terms. For its implementation, the function290

CalcOpticalFlowHS of the OpenCV 2.x versions was used. The local parameters to be tuned are the trade-off291

parameter λ and the down-scaling levelsM , leaving the other function’s parameters as default (in particular,292

the number of iterations was left in Niter = 100). The multi-level pyramid strategy was implemented in the293

same way as in the LK-avg method.294

3.1.4. TVL1 method295

The TVL1 method has a similar formulation to the previous one, but the OF equation is enforced using296

the L1 norm, and regularity is imposed by penalizing the total variation of the vector field (u, v):297

arg min
u,v

{∫
I

|∇u|+ |∇v|+ λ · |Ix · u+ Iy · v + It|
}
. (5)

The total variation semi-norm promotes piece-wise smooth solutions, and allows to better preserve strong298

discontinuities in the vector field (Wedel and Cremers, 2011), for instance, those observed in interfaces299

between different height clouds moving in different directions. This problem can be solved using convex,300

non-differentiable optimization techniques Chambolle (2004). We use here the open-source implementation301

of Sánchez et al. (coded in C language) with its default parameters except for λ and M which are locally302

optimized. The other parameters are set as recommended in Sánchez et al. (2013): τ = 0.25, θ = 0.30,303

ε = 0.01, η = 0.5 y Nwarps = 5.304

3.1.5. PIV method305

For the block matching algorithm of Lorenz et al., we use the implementation provided by the Open-306

PIV python library (extended_search_area_piv). The details of this widely-used method have been briefly307

provided in the introduction and a complete description can be found in Kühnert et al. (2013). Previous to308

its utilization, two parameters need to be optimized to the region: the size of the neighbouring block (Wn)309

and the size of the search area (Ws) in the previous image, both assumed square, and so defined by their310

lengths wn and ws, respectively. Due to computational reasons, a grid-search of 30× 30 px was used for the311

motion field space support. The resulting sparse CMV is then interpolated by us to each image pixel with312

a bi-linear interpolation of u and v. We found no significant performance difference when using a 5× 5 px313
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support. The choice of the space step affects the overlap function’s parameter, which was set to wn− 30 px.314

The rest of the function’s parameters are fixed to their default values.315

3.2. Training316

The five algorithms presented before have parameters to tune. This optimization may depend on the317

region’s characteristics, specially its clouds typical regime. Here we have tuned these parameters for the318

territory specified in Figure 1. Images from year 2017 were used for this purpose, leaving the year 2016 for319

evaluation. The optimization is done for the first time step, this is, the present time and previous images (30320

minutes difference) are used to estimate the next one via each CMV technique, and the optimal parameters321

are the ones which minimize the average root mean squared deviation (RMSD) of this estimation. The322

extrapolation technique to estimate the next image from the current image I(x, y, t) and the non-integer323

(u, v) field is the standard one (backward search), in which I(x, y, t + 1) is constructed pixel-by-pixel with324

a sub pixel bilinear interpolation of I(x − u, y − v, t). The choice to optimize the parameters for the first325

time step relies in the iterative construction of the predicted images, in where the prediction I(x, y, t+ h) is326

generated by using the CMV and the previous prediction I(x, y, t+ h− 1), initiating with I(x, y, t), so each327

extrapolation is only for one time step ahead at each time. Subsection 5.1 shows the training of each CMV328

technique and provides the optimal parameters for each methodology in the region. As will be observed in329

Subsection 5.2, different extrapolation methods yield to quite similar performance results, hence the choice330

of the extrapolation procedure for training is not expected to affect significantly the parameters tuning.331

3.3. Solar irradiation conversion332

The last step of the prediction chain is the conversion of the predicted hours-ahead images to global333

horizontal solar hourly irradiation. This is done in this work by means of a Cloud Index Model (CIM) that334

has been specifically adjusted to the target region in Laguarda et al. (2020). The model combines the ESRA335

clear sky model (Rigollier et al., 2000) with a simple linear cloud attenuation factor, F (η), which is based336

on the cloud index η, calculated from the albedo images ρ. This model is referred in the cited article as337

CIM-ESRA. The Linke turbidity factors to use in the region are given as seasonal daily trends in Laguarda338

and Abal (2016). The model has for the region a relative mean bias deviation (rMBD) of about −1% and a339

relative root mean square deviation (rRMSD) of 12.5%, both expressed as percentage of the measurements340

average and at hourly scale. The use of these seasonal cycles does not downgrades the optimized model’s341

performance in a significant extent for GHI estimation in the region. For instance, the use of the McClear342

model (Lefèvre et al., 2013) instead of the ESRA model with the CIM strategy, CIM-McClear, achieves343

the same bias and a rRMSD of 12.1%, which is slightly lower than the CIM-ESRA. Due to the ease of344

implementation and simplicity, we prefer here the CIM-ESRA model for image-to-GHI conversion.345
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4. Performance metrics346

The evaluation makes use of common metrics to assess the performance of deterministic forecast, namely,347

the mean bias deviation (MBD), the root mean square deviation (RMSD) and the Forecasting Skill (FS),348

as a function of the hourly forecast horizons h, from 1h to 5h. The first two metrics are also given in their349

relative versions, expressed as a percentage of the observed average (rMBD and rRMSD, respectively). The350

FS metric quantifies the gain in terms of RMSD of the prediction with respect to a persistence procedure.351

The performance evaluation is presented at two levels: albedo image and solar hourly irradiation. More352

details on the evaluation framework for deterministic solar forecast can be found in (Yang et al., 2020a). For353

the sake of completeness, we describe in the following the image level evaluation (which is rather uncommon354

in the literature) and the persistence procedures used for both levels, especially for the irradiation level, as355

its choice critically affects the FS metric. The two-levels evaluation is intended to bridge the gap between356

them, in particular, to understand at which extent an improvement at image level impacts the performance357

at irradiation level, which is the ultimate goal of these techniques.358

The image level evaluation is carried out by comparing the predicted albedo images with their corre-359

sponding ground truth (real albedo image) for each h. All images’ pixels are used, except for a small frame of360

50 px around them (' 0.5% of the image). This is intended to avoid image’s border artifacts and problems,361

that are common in this strategy. An MBD and RMSD are obtained for each image comparison, which are362

then averaged for the same h to obtain the overall performance. Images from the year 2016 are used for this363

purpose while images from 2017 are used for algorithms’ optimization, thus a ' 50/50 split is implicitly per-364

formed for training/test. The evaluation is done for each CMV methodology and for the image persistence,365

which is implemented here by simply maintaining the dimensionless albedo image constant in the future h366

time steps. The MBD and RMSD normalization is done by using the average of each image mean value in367

the testing set. The FS is constructed from the RMSD curve of each method and the persistence.368

The irradiation level evaluation is performed by using the predicted and measured time-series of GHI at369

the sites in Table 1. For this evaluation in particular there is much work done in defining an exigent and370

universal persistence benchmark. As the guidelines in Yang et al. (2020a) indicate, the persistence should371

be based on the clear sky index, kc, the normalization of the GHI by the corresponding estimated clear sky372

irradiation from a clear sky model. This dimensionless magnitude eliminates the geometrical behavior of373

the GHI and is a better signal, in the stationary sense, than the clarity index, kt, in where the normalization374

is done with the horizontal extraterrestrial irradiation. The persistence used in this work is therefore based375

on kc and, as we used the locally adjusted ESRA model for image-to-GHI conversion, we used it also for376

the clear sky index calculation. There are some ways to use kc for persistence, from where we shall consider377

two of them as reference for the the later discussion: (i) the regular persistence (kc(t+ h) = kc(t)), PERS,378

and (ii) the convex combination of the regular persistence with the climatological value (Yang, 2019b),379
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CC. The first one is the simple naive and widely-known persistence procedure and the second one is the380

recommended benchmark (Yang et al., 2020a), as it yields to more exigent performance levels than the381

former. In Alonso-Suárez et al. (2021) an analysis of these benchmarks for the target region is provided,382

including the sensibility of the second method to the training period, which is low. In this work we use the383

measurements during the training year (2017) to calculate the covariance values required for the CC.384

5. Results385

Reproducibility is an important feature in both solar resource assessment and forecasting works (Yang,386

2019a). This is a quite difficult task when a large volume of satellite images is involved. In this work387

we address this issue by using publicly available satellite images and open python libraries or open source388

algorithms. We also provide a detailed description of the methods and their implementation, so they can389

be reproduced elsewhere. In this section we present our results regarding the algorithms optimization390

(Subsection 5.1) and performance evaluation, at image (Subsection 5.2) and irradiation (Subsection 5.3)391

levels. For the sake of clarity, in this section we focus the discussions mainly on the rRMSD metric and FS392

score. The rMBD plots along with a brief discussion are provided in AppendixA.393

5.1. Optimization394

The optimization results for each algorithm are presented in Table 2 and Figure 2. Table 2 shows the395

optimal parameters obtained for each methodology. The plots of Figure 2 show the rRMSD trend as a396

function of these parameters, being minimum at the optimal values. As the adjustment is done with the397

training set (images for the 2017 year), the rRMSD curves of Figure 2 must not be taken as each method real398

performance. Instead, these plots shall be considered as a help to visualize that these optimum parameters399

indeed exist and that slight variations from them are not critical. All the training rRMSD curves are smooth400

around the optimal values of λ, w or wn. Intermediate values of the down-scaling levels M achieve better401

training performance and variations of ±1 from the optimal value typically do not downgrade the training402

rRMSD in more than 1%. The optimal values of Table 2 will be used in the following for performance403

assessment of the methods, but over the evaluation set.404

Table 2: Optimal parameters for each CMV technique.

LK-avg LK-afn FRB HS TVL1 PIV

w (px) 50 w (px) 60 w (px) 22 λ 0.200 λ 0.055 wn (px) 120

M 3 M 4 M 5 M 5 M 6 ws (px) 144
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(a) LK-avg algorithm. (b) LK-afn algorithm.

(c) FRB algorithm. (d) HS algorithm.

(e) TVL1 algorithm. (f) PIV algorithm.

Figure 2: Optimization of the CMV methodologies at image level. The curves (an their optimum) are not representative of the

real prediction performance, as the parameters adjustment is done over the training set (year 2017) and for ∆t = 30 minutes.
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5.2. Image forecasting405

Performance evaluation at the image level is carried out by comparing, pixel-to-pixel, the predicted albedo406

images at each time horizon with their corresponding real image. Image prediction is a very challenging task,407

as it requires to predict the irregular cloudiness at each pixel. Table 3 presents the performance metrics408

as a function of the forecast horizon for each optimized method and the image persistence. Figure 3 shows409

graphically its rRMSD and FS information. The image extrapolation method used here is the baseline410

pixel’s backward search with a sub-pixel bilinear interpolation. All CMV forecast strategies beat the image411

persistence with positive FS and have rather similar rRMSD. It should be noted that all methods are locally412

optimized, so the performance differences tights between each other and are better observed with the FS413

score (Figure 3b). At image level, the TVL1 and LK-afn methods outperform the rest for all forecast414

horizons, having similar FS scores. For the first hour ahead the FRB methods also provides competitive415

performance, but it downgrades for higher forecast horizons (h ≥ 2). Overall, the best image forecast416

methods (TVL1 and LK-afn) provide a gain in FS of ' 4% for h = 1 and of 2-3% for h ≥ 2 over the worst417

performing methods (HS and PIV). Table 3 also provides the performance comparison between the LK-avg418

and LK-afn techniques. It is observed that the LK-afn has an unequivocal better performance, so for the419

sake of clarity we will only consider this LK method in the following discussion. It shall be pointed out that420

the LK-avg method was also assessed in our tests at solar irradiation level and the same conclusion holds:421

it did not improve the performance of the LK-afn method.422

Table 3: Image forecasting performance as a function of the forecast horizon. The reference average is ρ̄ = 0.28.

h (hour) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

method relative MBD (%) relative RMSD (%) forecasting skill (%)

LK-avg +1.3 +1.6 −0.9 −4.9 −5.6 46.8 56.5 62.8 68.6 73.2 +9.7 +8.2 +7.9 +7.1 +4.3

LK-afn +1.6 +2.0 −0.5 −4.6 −5.7 43.9 54.8 60.8 66.7 71.1 +15.5 +11.0 +10.9 +9.8 +7.0

FRB +1.6 +1.7 −1.1 −5.7 −6.3 44.4 55.9 62.5 68.5 73.1 +14.4 +9.1 +8.5 +7.3 +4.3

HS +0.4 +0.5 −2.9 −7.3 −9.0 47.5 55.5 61.6 67.5 72.0 +10.7 +9.0 +8.8 +7.6 +4.6

TVL1 +0.8 +0.9 −2.1 −6.4 −7.7 43.9 54.7 60.6 66.5 71.0 +15.3 +11.1 +11.2 +10.0 +7.1

PIV +1.5 +1.7 −0.2 −3.7 −3.8 45.9 56.7 63.0 68.6 72.8 +11.6 +7.8 +7.7 +7.2 +4.8

persistence +2.1 +1.1 +0.3 −1.7 −5.0 51.1 61.2 67.5 72.8 76.7 – – – – –

A word shall be said about the extrapolation strategy for image forecasting, the second step of the423

forecasting methodology. We tested three techniques that use the non-integer CMV: (i) the usual backward424

pixel’s search in which the opposite (u, v) field is used to find in the previous image the value to translate425

via nearest neighbour (DN) and with a sub pixel bilinear interpolation (DL), (ii) an optimized (block size)426

block moving technique from the previous to the predicted image (OW). In this last method, if two or more427

values get to the same pixel, then the average is calculated. Figure 4 shows the rRMSD achieved over the428
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(a) Relative RMSD. (b) Forecasting Skill.

Figure 3: Performance comparison at image level for all the forecasting algorithms.

testing set of these extrapolation methodologies when using the CMV estimated by the TVL1 algorithm,429

as a representative example. The results when using the other CMV algorithms are similar, as shown in430

Figure B.11 of AppendixB. Two things can be observed. First, the performance when using the different431

extrapolation strategies is similar, and second, the common backward search with bilinear interpolation432

provides the best prediction performance from these three, hence is the one used in this work (previously433

and afterwards).434

Figure 4: rRMSD of the TVL1 algorithm for different image extrapolation strategies (performance over the training data set).

To finish the image level forecasting analysis, two further studies are presented: (i) the performance435

gain obtained by using a spatial smoothing (image blurring) and (ii) the relative RMSD dependence with436

the amount of cloudiness in each image, approximated here by the mean albedo of the ground truth image.437
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The first analysis is reported in Figure 5 for the two best performing techniques, the TVL1 and LK-afn438

algorithms. The blur inspected here is the 20× 20 px fixed spatial average, as an exploratory analysis that439

will be complemented in the next subsection. It is clear that the blurring improves the forecasting accuracy440

at image level, increasing the FS in ' 12% for h = 1 and in ' 5% for h = 5 with respect to the single-pixel441

approach without spatial smoothing. The improvement of this procedure is similar for both techniques, as442

the curves in each plot are almost the same. The second analysis is shown in Figure 6 for three time horizons443

(1, 3 and 5 hours ahead) and the TVL1 algorithm (without blurring), as the plots are quite similar for all444

techniques. The figure shows the relative RMSD trend as a function of the mean albedo. Each dot is a445

comparison between a predicted image and the corresponding ground truth for the given forecast horizon. As446

expected, the prediction downgrades with the time horizon. The mean rRMSD value of each plot coincides447

with the quantitative values provided in Table 3. It is observed that images that have a lower mean albedo,448

i.e. less presence of clouds, are better predicted, achieving, for instance, rRMSD values of 15-20% for 1-hour449

ahead (at ρ̄ ' 10%). The rRMSD increases with the cloudiness amount in the range of ρ̄ = 10-35%, with a450

flat peak around mid values (ρ̄ ' 35-40%). Then, for images with high average albedo, the performance tend451

to slightly improve, with a soft decrease in rRMSD for ρ̄ values above 40%. This overall behavior becomes452

more evident as the forecast horizon increases, as can be seen in Figure 6. The location of the flat peak also453

tend to increase with the forecast horizon, being located at ρ̄ ' 30% for h = 1 and at ρ̄ ' 35-40% for h = 5.454

The plots of Figure 6 have the same x and y axis to facilitate the inter-comparison.455

(a) Relative RMSD. (b) Forecasting Skill.

Figure 5: Performance at image level with and without spatial smoothing for the best two methods (TVL1 and LK-afn).
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(a) 1 hour forecast horizon. (b) 3 hour forecast horizon. (c) 5 hour forecast horizon.

Figure 6: Relative RMSD dependence with the mean albedo of the ground truth image for the TVL1 forecasting algorithm.

5.3. GHI forecasting456

The GHI forecast is evaluated on a hourly basis, so, hourly irradiation values should be compared with457

hourly predicted irradiation. A pixel in an instantaneous image fails to accurately represent the hourly458

average behavior of both cloudiness and solar irradiation at given sites. To account for this, assessment459

models usually make use of spatial smoothing, so that the space average represents the time average via an460

ergodic assumption (Laguarda et al., 2020), achieving a fair comparison and reducing the uncertainty of the461

hourly solar estimation. The third step of the forecasting methodology is to convert instantaneous predicted462

images into hourly irradiation values, so the same principle applies. This can be done in two ways. The463

first one is by using the optimal spatial smoothing of the time t assessment (fixed for all forecast horizons),464

thus considering this third step as independent from the forecast itself, which is then exclusively left to the465

image prediction. The second one is by obtaining the optimal spatial smoothing for each forecast horizon,466

hence exploiting the procedure to also filter inaccuracies in the image prediction step (as it is equivalent to467

an image blurring). In the following, both approaches are analyzed. Although the single pixel utilization468

does not hold for hourly values, it is also included in the discussion, as this is not usually provided in the469

literature. However, detailed results for single pixel are left to AppendixC.470

The spatial smoothing effect is illustrated in Figure 7 using the TVL1 algorithm as example. The plot471

shows the rRMSD curve as a function of the smoothing window length (in px) for each forecast horizon.472

The optimum window length is shown in red squares and the analysis includes the satellite assessment473

optimum (h = 0). The assessment optimal averaging window is 20 × 20 px and higher values are obtained474

for hourly prediction, increasing with the forecast horizon, as larger h imply higher inaccuracies. The curve’s475

minimum is better marked for assessment than for prediction, and it flattens out with the forecast horizon.476

A non negligible rRMSD improvement is observed when using the optimal window in comparison to the477

fixed one. This improvement increases with the lead time. The same analysis, but for the other algorithms,478

is provided in AppendixD, where the same trends are observed with small changes in the optimal window479

lengths depending on the methodology.480
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Figure 7: Effect of the image spatial smoothing on the relative RMSD of the best performing algorithm (TVL1)

.

To conclude the smoothing analysis, Figure 8 shows the rRMSD and FS curves of the TVL1 method481

when using a single pixel, a fixed and an optimal spatial smoothing. The rRMSD plot (Figure 8a) includes482

the CC and PERS procedures but the FS is calculated with respect to the CC. Single pixel shows the483

worst performance of the three approaches, as expected. It overcomes the PERS performance but not484

the CC. Both spatially smoothed versions outperform CC at almost all lead times, with the exception of485

the 5-hours ahead forecast with fixed window, in which the CC provides a slightly lower rRMSD. The486

optimal spatial smoothing provides the best performance, with a significant gain over the fixed window487

approach, especially for the larger forecast horizons, and showing FS scores between 11-18%. As it will be488

shown next, the FS curve of Figure 8b of the spatially smoothed TVL1 algorithm represents also the best489

solar irradiation performance among all the methods analyzed in this work. For further reference, Table 4490

provides the relative RMSD of the hourly irradiation assessment (h = 0). This is the baseline uncertainty491

of the satellite-to-irradiation model for each spatial smoothing. As the fixed smoothing is defined here as492

the optimal assessment spatial window, both the fixed and optimal smoothing coincide at h = 0, being of493

rRMSD ' 13%. The findings in Table 4 are in agreement with Laguarda et al. (2020), where an analysis of494

the satellite assessment uncertainty for the region is provided as a function of the spatial average.495

Table 4: Relative RMSD of the irradiation assessment (h = 0) for different spatial smoothing.

single fixed optimal

pixel smoothing smoothing

relative RMSD (%) 16.2 12.9 12.9
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(a) Relative RMSD metric. (b) Forecasting Skill score.

Figure 8: Comparison of the GHI prediction performance of the TVL1 algorithm with the single pixel approach and with a

fixed and optimal spatial windows. PERS and CC benchmarks are given as reference, and the FS is calculated with the latter.

Tables 5 and 6 present the performance metrics when using the fixed and optimal window’s length,496

respectively, and for all the algorithms. It includes both persistence procedures, but the FS is calculated by497

using the CC, as it is the most exigent benchmark. The rRMSD and FS are illustrated in Figure 9, where498

the fixed window utilization is at the left panels and the optimal window utilization is at the right panels.499

When using a fixed spatial window, the only CMV algorithm that outperforms the CC for almost all500

lead times is TVL1 (except for the last one, in which is slightly beaten by the CC). LK-afn, FRB and HS501

algorithms only provide positive FS in the first three lead times, and PIV only in the first one. This means502

that, under the fixed window strategy, only TVL1 can be considered a clear improvement over the most503

exigent benchmark. On the other hand, it shall be noted that all methods succeed to outperform the regular504

PERS procedure, with which satellite-based forecasting strategies has been evaluated in the past. For the505

best knowledge of the authors, this is the first work in which the CC persistence is used as benchmark for506

solar satellite forecast up to 5 hours ahead.507

When using the optimal spatial smoothing, all methods succeed to outperform the CC benchmark,508

providing positive FS. The methods performance tighten, as the spatial smoothing effect provides different509

gains for each algorithm with respect to the fixed window. However, the general conclusions are the same:510

the TVL1 method is the best overall method and the PIV is the weakest one. Under the optimal smoothing511

framework the other three methods (LK-afn, FRB and HS) provide a competitive performance to that of512

the TVL1, and for h = 1 the HS method succeed to slightly outperform it. The second best performing513

methods are the HS and LK-afn algorithms, but they downgrade for the last two lead times. The FRB514

method, although promising at image level, especially for the first lead time, does not stand out at any515

forecast horizon for GHI prediction.516
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Table 5: Irradiation forecasting performance metrics with the fixed spatial smoothing.

h (hour) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

method relative MBD (%) relative RMSD (%) forecasting skill (%)

LK-afn −1.3 −1.9 −2.3 −3.0 −3.0 19.3 27.7 34.3 39.9 42.7 +6.1 +6.7 +3.8 −1.8 −5.0

FRB −1.3 −2.1 −2.9 −4.0 −4.5 19.7 28.5 35.4 40.9 43.5 +4.1 +4.0 +0.5 −4.3 −7.0

HS −1.3 −2.0 −3.0 −4.0 −4.5 19.3 27.4 34.5 40.0 43.2 +6.2 +7.5 +3.0 −2.0 −6.0

TVL1 −1.0 −1.2 −1.4 −1.9 −2.0 19.0 26.9 33.4 38.4 41.1 +7.8 +9.3 +6.1 +2.1 −0.9

PIV −0.6 −0.1 +0.1 −0.4 −0.3 20.2 29.8 37.6 43.2 45.9 +2.0 −0.6 −5.6 −10.1 −12.7

CC −0.8 −1.3 −1.9 −2.5 −2.6 20.6 29.7 35.6 39.2 40.7 – – – – –

PERS −0.8 −1.4 −2.1 −2.8 −3.0 21.2 31.4 38.8 43.8 46.5 – – – – –

Table 6: Irradiation forecasting performance metrics with the optimal spatial smoothing.

h (hour) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

method relative MBD (%) relative RMSD (%) forecasting skill (%)

LK-afn −0.9 −0.9 −1.2 −1.5 −1.2 18.6 24.8 30.0 34.2 36.8 +9.6 +16.4 +15.9 +12.7 +9.6

FRB −1.0 −1.0 −1.6 −2.0 −1.7 19.0 25.5 30.6 34.5 36.5 +7.6 +14.1 +14.0 +12.0 +10.3

HS −0.8 −0.9 −1.6 −2.3 −2.4 18.4 24.4 29.7 34.2 36.6 +10.7 +17.9 +16.5 +12.9 +10.1

TVL1 −0.7 −0.3 −0.3 −0.4 −0.2 18.4 24.3 29.4 33.3 35.4 +10.6 +18.0 +17.4 +15.0 +13.0

PIV −0.2 +0.7 +1.0 +1.0 +1.5 19.4 27.1 33.2 37.5 39.9 +5.7 +8.8 +6.7 +4.3 +2.0

CC −0.8 −1.3 −1.9 −2.5 −2.6 20.6 29.7 35.6 39.2 40.7 – – – – –

PERS −0.8 −1.4 −2.1 −2.8 −3.0 21.2 31.4 38.8 43.8 46.5 – – – – –

6. Conclusions517

Satellite-based solar forecasting methods still present a large space for improvements. In this work, a518

comprehensive assessment of up-to-date techniques based on static two-dimensional cloud motion vectors519

(CMV) is provided for a region with intermediate short-term solar irradiance variability. The performance520

analysis is done for hourly forecast up to 5 hours ahead at image and irradiation level, and consist of five521

methods: the popular block-matching algorithm and four optical flow methodologies. A detailed analysis is522

presented, discussing also the image extrapolation and the spatial smoothing strategy, issues which are not523

commonly addressed. This work compares the five CMV methods, being the larger solar satellite forecast524

comparison to date, and uses the exigent clear-sky index convex combination (CC) of persistence and525

climatology as performance benchmark, that has not been previously reported in this satellite framework.526

The work also provides the optimization of the two main parameters for each method to be used in the527

Pampa Húmeda region of South America, which may be extrapolated to other regions with similar climate528

characteristics or solar resource variability. There may be further room for improvements by optimizing the529
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(a) Relative RMSD metric (fixed smoothing). (b) Relative RMSD metric (optimal smoothing).

(c) Forecasting Skill score (fixed smoothing). (d) Forecasting Skill score (optimal smoothing).

Figure 9: Performance comparison at irradiation level for all the forecasting algorithms.

other algorithms’ parameters, which here are set as default or recommended, and/or by considering different530

parameters’ values depending on the cloudiness’ amount, type or regime that is observed in the sequence.531

Both detailed studies are left for future work.532

We found that the TVL1 method is the best satellite CMV strategy for this region. It provides the533

best performance for image and hourly irradiation forecasting. For instance, it is the only method that534

outperforms the CC benchmark for most lead times when using a fixed spatial smoothing window adjusted535

for hourly solar assessment and it provides almost the best performance for all forecast horizons when the536

optimal spatial smoothing is used. On the other hand, the classical block-matching algorithm, implemented537

here as the PIV algorithm, resulted in the weakest option for all forecast horizons at image and irradiation538

levels, using fixed or optimal smoothing. We also found that the LK method with an affine transformation539

constrain performs better than the simplest LK approach in which the motion field is forced to be constant540

within a neighborhood. Same qualitative results are observed at image and irradiation levels, but the541
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quantitative relative RMSD values differ in scale, as a consequence of different data ranges, geometrical542

behavior and reference average values (satellite albedo and hourly irradiation). Optimal spatial smoothing,543

performed ad-hoc for each method, changes some performance curves as a function of the lead times, as544

it tights the forecasting skill curves, but does not modify the general conclusion. This optimal smoothing545

procedure also allows all the methods to outperform the exigent CC solar benchmark.546

The findings of this comparison and the parameters’ tuning may be location-dependent, so further similar547

studies are needed in other areas of the globe. Especially, the relation between the regional cloudiness regime548

(cloud type, cloud’s typical development and movement, intermittency, etc.) with the CMV performance549

and with each method’s parameters should be further inspected. The image acquisition time rate is another550

potential source of discrepancy, being here of 30 minutes, with non-regular acquisition during daylight551

periods. The impact of the acquisition time rate is an interesting study that can be performed for this552

region with the current 10-minutes GOES-16 satellite images, and is part of our current work.553
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AppendixA. Mean bias deviation plots557

Figure A.10 shows the relative MBD curves for all the settings: at image level and irradiation level with558

a single pixel approach and fixed and optimal spatial smoothing. This is the same information that was559

shown in Tables 3, 5 and 6 and is shown in Table C.7. There is not a clear relationship between biases at560

image and irradiation levels. The TVL1 algorithm is also the best choice from the MBD point of view, as561

seen in Figure A.10d. It shall be noticed that the PIV algorithm is the only one which yields positive MBD562

at irradiation level, being always upper from the rest.563

(a) Albedo image level. (b) Irradiation level (single pixel).

(c) Irradiation level (fixed spatial smoothing). (d) Irradiation level (optimal spatial smoothing).

Figure A.10: Relative MBD as a function of the forecast horizon at image and irradiation levels.
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AppendixB. Extrapolation strategies plots for each method564

(a) LK-afn algorithm. (b) FRB algorithm.

(c) HS algorithm. (d) PIV algorithm.

Figure B.11: Relative RMSD for different image extrapolation strategies in each method (results over the test data set).
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AppendixC. Single pixel GHI forecasting565

For the sake of completeness, Table C.7 and Figure C.12 provide, respectively, the performance metrics566

and plots regarding the single pixel approach for GHI conversion. The rMBD plot was given in AppendixA,567

jointly with the others.568

Table C.7: Irradiation forecasting performance metrics with the single pixel approach.

h (hour) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

method relative MBD (%) relative RMSD (%) forecasting skill (%)

LK-afn −1.6 −2.1 −2.5 −3.2 −3.2 23.0 31.1 37.3 42.7 45.2 −11.6 −4.8 −4.9 −8.9 −11.0

FRB −1.5 −2.3 −3.1 −4.2 −4.4 22.9 31.4 38.1 43.3 45.5 −11.4 −5.8 −7.1 −10.6 −11.7

HS −1.5 −2.2 −3.0 −4.1 −4.4 23.0 30.4 37.2 42.3 45.3 −11.5 −2.6 −4.5 −8.0 −11.3

TVL1 −1.4 −1.6 −1.6 −2.0 −2.3 22.4 29.9 36.1 40.9 43.2 −8.7 −0.8 −1.5 −4.3 −6.1

PIV −1.0 −0.4 −0.2 −0.6 −0.5 23.4 32.6 40.0 45.4 47.7 −13.5 −9.8 −12.4 −15.7 −17.2

PERS −0.8 −1.4 −2.1 −2.8 −3.0 21.2 31.4 38.8 43.8 46.5 – – – – –

CC −0.8 −1.3 −1.9 −2.5 −2.6 20.6 29.7 35.6 39.2 40.7 – – – – –

(a) Relative RMSD metric. (b) Forecasting Skill metric with convex persistence.

Figure C.12: Performance comparison at irradiation level for all the forecasting algorithms (single pixel approach).
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AppendixD. Spatial smoothing plots for each method569

(a) LK-afn algorithm. (b) FRB algorithm.

(c) HS algorithm. (d) PIV algorithm.

Figure D.13: Effect of the image spatial smoothing on the relative RMSD metric at irradiation level for the different CMV

techniques. This plot for the best performing technique is shown in Figure 7.
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