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Abstract

An accurate knowledge of the direct solar irradiance at normal incidence (DNI) is required to size solar

energy systems, specially those using solar concentration technologies. In the absence of measurements, DNI

can be estimated over an arbitrary site with a dedicated satellite model or by using satellite-derived global

horizontal irradiance (GHI) and a phenomenological diffuse-direct separation model. This second procedure

is error-prone, specially under partial cloudiness conditions and low solar elevation angles. A novel and

simple semi-empirical satellite-based model to estimate DNI in moderate albedo regions using a physical

clear sky model and a cloudiness index obtained from visible satellite imagery is proposed and assessed. An

ergodic assumption in which the images are spatially averaged to better represent the hourly time basis is

used. Over the target region (Southeastern South America, SESA), the new DNI satellite model outperforms

the alternative strategy at the hourly level, with an average uncertainty of 20% (versus 25%) when compared

with three measurement station’s data sets located in center Argentina, southern Brazil and Uruguay.

Keywords: Solar radiation, Direct normal irradiance, satellite modeling, semi-empirical model,

GOES-East images

1. Introduction 1

Direct normal solar irradiance (DNI) is the portion of solar radiation that reaches the ground from a 2

small solid angle around the Sun (circumsolar region). It is the most relevant variable required to evaluate 3

the technical and economical feasibility of concentration of solar power (CSP) projects. It is also required to 4

estimate global solar irradiance on inclined surfaces from global horizontal irradiance (GHI), and ultimately, 5

the expected PV power production. 6

DNI is measured with a pyrheliometer mounted on a precision solar tracker. However, this implies 7

high costs and maintenance requirements and makes long measurement series of DNI relatively scarce. In 8

absence of local quality ground measurements, DNI can be estimated from GHI (satellite-derived or ground 9
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measured) by using diffuse fraction models, (fd = DHI/GHI), where DHI is the diffuse horizontal irradiance.10

Phenomenological parameterizations for fd are usually associated with significant errors (Gueymard and11

Ruiz-Arias, 2016) even if trained with local data (Abal et al., 2017). Furthermore, this method is not12

adequate for DNI estimation at low Sun angles as the error is amplified by the 1/ sinαs factor, where αs is13

the solar altitude.14

An alternative form of estimating DNI is to use a satellite-based model that includes the relevant in-15

formation on the state of the atmosphere. Heliosat-4 (Qu et al., 2017) is the last-reported Heliosat family16

model, based on the Meteosat satellite images and other remote-sensed or modeled information. It is a17

physically motivated model that estimates GHI and DNI for all sky conditions based on two look up tables18

(LUT) schemes that model the clear sky radiation (Lefèvre et al., 2013) and cloud effects. These LUT result19

from a Radiative Transfer Model (RTM) with several combinations of atmospheric and cloud conditions.20

Another family are the SUNY models (Perez et al., 2015). They use GOES satellite information to estimate21

solar radiation over the Americas with an empirical parametrization of cloud effects. In the past years, the22

National Solar Radiation Database (NSRDB, https://nsrdb.nrel.gov/) has developed a model to estimate23

DNI with focus on North America based on RTM parametrizations (Sengupta et al., 2014a,b, 2018; Xie24

et al., 2016). Recently, some physical improvements were applied to consider the contribution of circumsolar25

radiation on the Sun-observer direction on the DNI component (Xie et al., 2020). Regarding South America,26

(Porfirio and Ceballos, 2017) presented a DNI satellite model based on visible channel GOES-East infor-27

mation. The model is built from physical considerations and calculates DNI over Brazil using atmospheric28

information from different sources.29

Previous assessments for satellite-based DNI models at the hourly level, as summarized in Table 1, show30

that satellite-based estimation of DNI has typically a relative root mean square deviations (rRMSD) with a31

lower bound around 30% (in terms of the average DNI)1. This is significantly larger than the corresponding32

bound for GHI estimation models which can be as low as 12% of the mean hourly GHI (Laguarda et al.,33

2020), depending on the site. These results are not to be used to rank models according to performance,34

since the accuracy of a DNI model depends on local conditions and on the quality of the atmospheric inputs,35

among other factors. However, Table 1 provides context and shows that there is room for improvement in36

satellite-based DNI estimation.37

In this article, a simple operational model to estimate DNI from visible channel satellite information38

is presented and assessed. Visible channel images provide daylight cloud information suitable for satellite-39

based solar radiation models. Cloud detection from the visible channel fails when the target pixel has a high40

albedo, since clouds can not be distinguished from the bright background. Thus, the model in its present41

1All the statistical performance metrics used in this work are defined in the usual form (Gueymard, 2014) and are expressed

in relative terms as a percentage of the measured variable.
2Estimates DNI from the diffuse separation algorithm proposed by Liu and Jordan (1960).
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Performance of satellite-derived hourly DNI

Model rMBD rRMSD sites of validation reference

SUNY-v1 -4.1 35.1 10 sites en USA Perez et al. (2002)

SUNY-v1 -18.0 52.0 8 sites en USA Perez et al. (2015)

SUNY-v2 -2.4 29.9 10 sites en USA Perez et al. (2002)

SUNY-v2 +6.8 31.0 4 sites en California Nonnenmacher et al. (2014)

SUNY-v2 -2.5 48.0 8 sites en USA Perez et al. (2015)

SUNY-v3 +14.3 67.2 3 sites en Canada Djebbar et al. (2012)

SUNY-v3 +3.5 38.0 8 sites en USA Perez et al. (2015)

SUNY-v4 -0.5 33.0 8 sites en USA Perez et al. (2015)

SolarGIS -2.0 34.1 18 sites en Europe Ineichen (2014)

NSRDB(v2) +4.5 33.2 9 sites en USA Habte et al. (2017)

Heliosat-32 +6.0 47.4 18 sites in Europe Ineichen (2014)

Heliosat-4 +0.5 28.0 France, Switzerland www.soda-pro.com/web-services

Heliosat-4 0.0 39.0 Florianópolis www.soda-pro.com/web-services

Table 1: Averaged performance Metrics (in % of the mean) reported for hourly satellite-derived DNI.

form is not adequate for areas with significant snow cover or other high albedo surfaces, such as desert 42

areas or salt flats. As a concrete example, we implement the model using publicly available images from 43

the visible channel of the geostationary satellite GOES-East (administrated by the National Oceanic and 44

Atmospheric Administration, NOAA) and test it against hourly ground data for three sites in Southeastern 45

South America (SESA region, (Bettolli et al., 2021; Hu et al., 2022)), a region mostly covered by grasslands 46

without significant elevations and with low-moderate surface albedo. 47

The method can be potentially applied to other sites for which visible-channel geostationary satellite 48

images are available and provided the target area has a moderate albedo. The model is based on the cloud 49

index strategy originally proposed by Cano et al. (1986) for GHI estimation and later adopted by various 50

authors such as Perez et al. (2002); Rigollier et al. (2004); Laguarda et al. (2020). In this scheme, the 51

ground irradiance is a fraction of the corresponding clear sky irradiance, as estimated with a suitable clear 52

sky model. The effect of clouds is taken into account with an attenuation factor which can be modeled from 53

visible channel images of a geostationary satellite. The implicit assumption that the clear sky modeling 54

and the cloud attenuation are independent instances, has a performance cost that has been quantified with 55

root mean deviations (RMSD) between 2 and 5% of the average DNI (on a one-minute timescale) (Oumbe 56

et al., 2014; Xie et al., 2016). However, the gain provided by this assumption in terms of simplicity and 57

computational requirements compensate this cost, when compared to detailed radiative transfer calculations. 58

Each satellite image quantifies cloudiness through a dimensionless cloudiness index η. Under arbitrary 59

conditions of cloudiness, the attenuation of radiation (with respect to clear sky conditions) is empirically 60

parameterized as a function of η in a form that is only weakly site-dependent, a feature that should be 61
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checked over the area of application. Models of this type are generically called Cloud Index Models or CIM.62

A CIM for GHI has recently been implemented by our group for the SESA region, obtaining an excellent63

accuracy in terms of rRMSD, of 12% at the hourly level and 15% of the mean at the 10-minute timescale64

(Laguarda et al., 2020, 2021). The present work extends these developments to the estimation of DNI.65

2. Information base66

The CIM model described in Section 3 is implemented and evaluated using ground data from three sites67

representative of the SESA region (see Figure 1). This area has an approximate surface of 1500 km2, is68

widely populated, and has an intense socioeconomic activity associated with food production and cattle69

rising. This territory is geographically homogeneous and composed mainly of low-altitude grasslands (below70

1500 m above mean sea level) and snow events are very exceptional. The area includes the territory of71

Uruguay, southern Brazil and eastern Argentina. Its climate is temperate with hot summers without dry72

seasons, being classified as Cfa in the updated Köppen-Geiger classification scheme (Peel et al., 2007; Beck73

et al., 2018). The solar irradiance short-term variability of the region is intermediate (Alonso-Suárez et al.,74

2020), in which clear, partly cloudy and overcast sky conditions alternate. In this section, the details of the75

used ground and satellite information are provided.76

2.1. Ground Measurements77

Ground measurements for GHI and DNI from three sites with the coordinates and data periods listed78

in Table 2 are used. The equipment and protocols of the three sites meet the quality requirements of the79

Baseline Surface Radiation Network (McArthur, 2005) although only the SM site (São Martinho da Serra,80

a site of the SONDA radiometric network, Brazil) is formally a part of BSRN. The other two are the main81

station of the Solar Energy Laboratory (LES) network at Salto, Uruguay (site code: LE) and the labora-82

tory site of the Gersolar research center, National University of Luján, located 50 km from Buenos Aires,83

Argentina (site code: LU). At all sites, GHI is measured with class A spectrally flat pyranometers (accord-84

ing to ISO 9060:2018 standard) with ventilation units, while DNI is measured using Kipp & Zonen CHP185

pyrheliometers mounted on precision solar trackers. The instruments are cleaned and visually inspected on86

a weekly basis. The instruments at the LE site are calibrated every two years using class A pyranometers87

and pyrheliometers (Kipp & Zonen CMP22 and CHP1, respectively, kept in storage) with traceability to88

the World Radiometric Reference (WRR) at World Radiation Center (WRC) in Davos, Switzerland. At89

the LU site, instruments are periodically compared to a calibrated Kendall absolute cavity radiometer, also90

with WRR traceability, which is kept in storage and used sporadically as a reference. As mentioned, the SM91

site is part of the Brazilian SONDA network, installed and managed by the Instituto Nacional de Pesquisas92

Espaciais (INPE) (Dias da Silva et al., 2014).93
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Site Site code Lat.(◦) Lon.(◦) Alt. (m) Data period

LES (Salto) LE -31.28 -57.92 56 01/2015–12/2017

São Martinho da Serra MS -29.44 -53.82 489 01/2010–12/2016

Luján LU -34.59 -59.06 30 01/2010–12/2012

Table 2: Measurement’s sites information. The columns show the site’s code, the spatial coordinates and altitude above sea

level, and the period span of the measurements used in this work.
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(b) Measurement site locations.

Figure 1: Site locations to test the proposed DNI satellite-based CIM models in this work.

Quality control 94

The set of measurements includes pairs of simultaneous (GHI, DNI) values registered at the 1-minute 95

level as a result of an average of 6 instantaneous values taken at 10-second intervals. Then, measurements 96

are integrated into hourly values (in Wh/m2) as long as at least 2/3 of the one-minute data are available 97

for each hour. The hourly data series of DNI and GHI are subjected to a basic quality control procedure 98

based on a visual inspection and four successive filters described schematically in Table 3. 99

The first three filters are conceptually similar and consist of upper bounds for the irradiation values. 100

The first criterion is the BSRN recommendation to filter extremely rare values (Long and Shi, 2008). The 101

second one is to impose an upper envelope for each component determined by the ESRA clear sky model 102

(Rigollier et al., 2000) with an artificially low turbidity value for the specific region (TL = 1.8, in this case). 103

The third one consists of a threshold for the modified clearness index Perez et al. (1990) for GHI, and the 104
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determination of a typical region of the data on the (kt, kn) space, where kt is the usual clearness index (ratio105

between GHI and its corresponding irradiation at the top of the atmosphere, TOA) and kn is the broadband106

direct transmittance (ratio between DNI and TOA irradiation at normal incidence). The measurements107

outside this region are discarded as problematic. An example is shown in Figure 2, for the LE site. This last108

criterion is capable of removing misalignment errors and other problematic data. The SERI-QC procedure109

(Maxwell et al., 1993) bounds this typical region by two characteristic double exponential curves (also known110

as Gompertz curves), which are empirically and visually adjusted for each site. Finally, the fourth filter111

removes the measurements with solar altitudes lower than 7◦, which, in the case of GHI, are affected by the112

cosine error.113

Filter Component Condition Description

i
GHI −2 Wh/m2 < Ih < I0 1.2 cos θ1.2

z + 50 Wh/m2 BSRN extremely rare

DNI −2 Wh/m2 < Ib < I0 0.75 cos θ1.2
z + 30 Wh/m2 limits (Long and Shi, 2008).

ii
GHI 0 Wh/m2 < Ih < IESRA

h ESRA clear sky model upper

DNI 0 Wh/m2 < Ib < IESRA
b limit (TL = 1.8).

iii
GHI ktp < 0.85 Modified clearness index threshold.

GHI & DNI Typical region of (kt, kn) space Based on SERI-QC

determined by Gompertz curves. (Maxwell et al., 1993).

iv GHI & DNI αs > 7◦ Minimum solar altitude.

Table 3: Quality control filters applied on GHI and DNI irradiation components. The TOA irradiation is denoted by I0, and

the supra-index ESRA denotes that the corresponding variable is estimated with this clear sky model.

The Table 4 shows the results of the quality control procedure for each site. On average, 85% of the data114

meets the quality criteria for its use in this work. After the quality procedure, 25517 hours of DNI records115

are used.116

Diurnal data Filter (ii) Filter (iii) Filter (iv)

site valid data disc. hours disc. hours disc. hours selected

LE 9474 0.0% 9473 13.8% 8168 5.0% 7758 81.9%

MS 15390 0.0% 15387 9.8% 13876 4.1% 13303 86.4%

LU 5262 0.5% 5235 11.3% 4644 4.0% 4456 85.1%

total 30126 0.2% 30095 11.3% 26688 4.4% 25517 84.7%

Table 4: Results of the quality control of hourly DNI measurements. The starting set is the valid data selected after passing

filter (i) and a visual inspection. The percentage of samples discarded by each criterion is shown. The last two columns show

the number of samples that passed all filters and its percentage of the initial set.
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(a) DNI vs cosine of the solar zenith angle. (b) Quality filters in the kt–kn space.

Figure 2: Quality filtering results for the LE site showed in two diagrams. In the right plot, the lines show the double exponential

boundaries (Gompertz functions) used to determine a typical region for each site’s data. The x = y is also included (dashed

line) as reference.

2.2. GOES-East satellite visible channel images 117

As mentioned in the introduction, CIM models quantify the effect of cloudiness in the ground-level solar 118

irradiance by using satellite information in the visible range. Cloudiness can be challenging to distinguish 119

from the background in areas with a high albedo, such as snow-covered, desert, or salt flats. In these cases, 120

including more cloud information from GOES infrared images, atmospheric modeled data, or other satellites 121

becomes necessary. The target region of this study does not include such areas, making additional satellite 122

information unnecessary. By this, the model’s scope is limited to moderate or low albedo sites. However, 123

its ease of use and minimal input requirements compensates, as can be applied widely and easily without 124

compromising its performance. Incorporating more cloud information is critical to extending the model’s 125

applicability to all-site coverage. 126

The satellite images used in this work are from the GOES-East geostationary satellite (placed above the 127

75◦W meridian), which has a viewing angle of approximately 40◦ over the region of interest (Laguarda et al., 128

2020). The GOES-13 physical satellite was operational during the considered period3 at that location and 129

its visible range (wavelengths between 0.54 µm and 0.71 µm) images were considered in terms of Reflectance 130

Factor, FR. Under normal operating conditions, the GOES-13 satellite generated two images per hour 131

for South America. However, this operational regime could be affected to monitor closely meteorological 132

priorities like hurricane events in the Caribbean and USA’s East and Central coasts, leaving South America 133

occasionally with images every 3 hours only. Hourly reflectance factor series, FR, were obtained for this 134

3GOES13 was operative from April 2010 to December 2017.
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work for the three sites with ground data and for the period of interest via linear interpolation of the Earth’s135

albedo ρ = FR/ cos θz, being θz the solar zenith angle.136

There is a compromise between using instantaneous satellite images4 to represent an hourly average over137

a site. This issue is solved here via an ergodic assumption, using a spatial average in small cells containing138

each site. The spatial average of an instantaneous image represents better the mean irradiance behavior139

within the hour. This idea has been successfully applied to GHI satellite estimation (Laguarda et al., 2020),140

improving CIM performance. For this work we use as cell area a latitude-longitude rectangle of 15× 18 km,141

and perform the same spatial average as in Laguarda et al..142

2.3. Atmospheric information from MERRA-2143

The CIM models require accurate estimates of DNI under clear sky conditions. Clear sky models rely on144

quality atmospheric information for its accuracy. In this work, we consider two clear sky models, detailed145

in Subsection 3.1, with different atmospheric information as inputs. One of these sources is the NASA’s146

Modern-Era Retrospective Analysis for Research and Applications database version 2 (MERRA2, Gelaro147

et al. (2017)). MERRA2 is a reanalysis data set obtained from the Global Earth Observing System Version148

5 (GEOS-5) atmospheric model. It provides hourly averages for several atmospheric variables over the149

entire globe, for the period 1980 to present, with spatial resolution of 0.5◦ × 0.625◦. MERRA2 integrates150

measurements from different sources, such as the Aqua and Terra MODIS instruments, the MISR (Multiangle151

Imaging SpectroRadiometer), the AVHRR (Advanced Very-High-Resolution Radiometer) for 2000-2014 and152

airborne sensors (1980-2002). It also incorporates ground-based observations from the Aeronet network153

(https://aeronet.gsfc.nasa.gov/).154

In Gueymard and Yang (2020), MERRA2 estimates for aerosol-related variables such as Aerosol Optical155

Depth at 550 nm (AOD550) and the Angström exponent (α) are evaluated over different climatic regions156

(characterized by their Köpen-Geiger classification) over the 2003-2017 period, using ground measurements157

from 800 Aeronet sites as a reference. For a Cfa climate (as the target region in this work), AOD550 shows158

a mean bias (rMBD) of −1.1% and a rRMSD of 35%, averaged over the three Aeronet sites in the region159

(Córdoba, CEILAP Buenos Aires and São Martinho da Serra). In a local study, Laguarda and Abal (2020)160

evaluated the accuracy of MERRA2 estimates for AOD550, Angström’s exponent α and precipitable water161

vapor over the same three Aeronet sites obtaining an rRMSD of 33.4% for AOD550, 26.8% for α and 11.2%162

for water vapor. It is clear that MERRA2 provides a rather high uncertainty when estimating aerosol-163

related variables, as evidenced by the AOD550 estimation, which has rRMSD above 30% in both studies.164

Although this limitation, the benefit of accessing a cohesive archive of atmospheric data from around the165

world through a single source is significant.166

4Indeed, the geostationary satellite images are quasi-instantaneous, as the radiometer detector’s array scans each pixel at

different moments. The time difference between pixels’ scans is of some minutes and a correction on this is not usually applied.
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3. Proposed DNI model (LCIM) 167

The proposed DNI model, named LCIM (LES Cloud Index Model), follows the basic structure of all 168

CIM models, 169

Îb = Icsb × F (η), (1)

where Îb is the model’s DNI estimate, Icsb is a clear sky DNI estimate and F is a cloud modifier factor 170

expressed as a function of the satellite cloud index, η, defined next in Subsection 3.2. The success of a CIM 171

model depends on the accuracy of the clear sky model, as well as on the definition of the cloudiness index 172

η and the empirical determination of its relationship with the attenuation factor, F . 173

3.1. Clear sky models 174

In order to determine the best option to estimate clear sky beam irradiation, we considered several 175

clear sky models with different characteristics. For brevity, here we present results for the two with the 176

best performance over the region:, REST-2 (Gueymard, 2008) and McClear (Lefèvre et al., 2013). The 177

first is operationally implemented while the second provides downloadable online estimates for arbitrary 178

sites over the globe. These clear sky models have been previously assessed and highlighted among other 179

alternatives due to their performance (Gueymard, 2012; Engerer and Mills, 2015; Ineichen, 2016; Ruiz-Arias 180

and Gueymard, 2018; Antonanzas-Torres et al., 2019). The clear sky samples required for the present 181

model’s evaluation were selected from the filtered hourly data set by extensive visual inspection aided by 182

the calculation of common quantities as the hourly and daily clearness indexes (kt, and also ktp at hourly 183

level) and the direct transmittance (kn). 184

REST2 estimates DNI and other irradiance components (Gueymard, 2008). It is related to the SMARTS2 185

spectral model (Gueymard, 2018) but in two sub-bands: 290–700 nm (ultraviolet and visible) and 700– 186

4000 nm (near infrared). The model uses up to 8 atmospheric variables as input, being the most relevant 187

the aerosol-related quantities, Angstöm turbidity factor (β) and exponent (α), and the precipitable water 188

column, available from the MERRA-2 database described in Subsection 2.3. With this input information, 189

REST2 clear sky DNI estimates have a rRMSD of 6.4% and a rMBD of −2.8% over the three SESA sites, as 190

reported in Table 5. The McClear clear sky model is based on LibRadTran Radiative Transfer calculations 191

(Mayer and Kylling, 2005) and works operationally as a look-up table (Lefèvre et al., 2013). For estimating 192

GHI, DHI and DNI, information of aerosol content, precipitable water and ozone columns and surface albedo 193

are required. This atmospheric information is provided at three-hour intervals by the Copernicus Atmosphere 194

Monitoring Service (CAMS) reanalysis database, while the daily albedo is obtained from NASA’s MODIS 195

imagery, https://modis.gsfc.nasa.gov/data/dataprod/. McClear’s hourly estimates are publicly available at 196

the CAMS website (https://atmosphere.copernicus.eu/) with global coverage. The original resolution is 197

50-150 km and the download procedure includes an interpolation that generates estimates at any location 198
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with time resolution up to 1 minute. The McClear model estimates DNI in the SESA region with rRMSD199

of 6.3% and rMBD of −1.1%.200

model atmospheric info. rMBD (%) rRMSD (%) KSI (Wh/m2)

REST2 MERRA2 -2.8 6.4 26.3

McClear CAMS -1.1 6.3 21.2

Table 5: Performance of the clear sky models as implemented in this work. Performance indicators are expressed as a percentage

of the mean hourly clear sky DNI (Ib = 836Wh/m2). The evaluation is based on 2493 clear sky samples (831 values per site,

on average). KSI is the Kolmogorv-Smirnoff Index, measuring the absolute difference between the cumulative distributions

functions of the estimated and measured DNI.

As summarized in Table 5, both clear sky models have a similar performance over the target area (see201

rRMSD and KSI), with McClear showing a smaller bias. However, both have different characteristics and,202

in our implementation, are based on different atmospheric data sets.203

3.2. Cloud attenuation204

To quantify the pixels’ cloudiness from visible channel images, the planetary (or Earth) albedo (ρ) is205

calculated by normalization with a dynamic range of extreme values (minimum and maximum) obtaining a206

cloud index η bounded by unity and zero (Cano et al., 1986),207

η =
ρ− ρmin

ρmax − ρmin
for ρmin < ρ < ρmax. (2)

The minimum values, associated with clear skies, present seasonal and intra-day variations that depend on208

each pixel, i.e. ρmin is a time-varying map over the area of interest. On the other hand, the maximum209

values are associated with overcast skies and have no evident seasonal dependence. To ensure that η is in210

the range [0,1], the constrains η = 1 for ρ > ρmax and η = 0 for ρ < ρmin are imposed. To estimate the211

intra-day and seasonal variation of the background albedo ρmin, the parametrization proposed in Tarpley212

(1979) and adapted to GOES-East reflectance factor in Alonso-Suárez (2017) is adjusted for each pixel in213

the image using the satellite clear sky samples, which are automatically selected from the pixel’s satellite214

time-series by a robust iterative procedure, described in detail in Alonso-Suárez et al. (2012).215

The maximum value ρmax is related to the saturation of ρ under overcast skies. In this proposal this216

is determined by an empirical constant. Its value for DNI estimation is adjusted to local conditions by217

using the ground measurements, showing an optimum value (in terms of RMSD) of ρmax ≃ 0.46-0.54, as218

shown in Figure 3. This figure illustrates the rRMSD variation of each LCIM model with respect to ρmax,219

using the same LCIM structure and different clear sky estimates. The bands in transparency shown one220

standard deviation between the three measuring sites. This value of ρmax is in agreement with the one221

reported by Ceballos et al. (2004) for satellite DNI estimation (ρmax = 0.465). This exact value was found222
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statistically by Ceballos et al. from the satellite images by seeking to identify the reflectance’s threshold 223

value between cumuliform and stratiform clouds in overcast skies, for which the DNI attenuation regime 224

changes significantly. 225

Figure 3: rRMSD of the optimized LCIM using ρmax as a parameter. Each line corresponds to a different clear sky model and

the transparency bands represent the standard deviation over the three sites. The minima are shallow and, for

simplicity, this parameter is fixed at ρmax = 0.5 (or 50%) for all models.

According to Eq. (1), the cloudiness factor, F , represents a clear sky index for the direct irradiation, 226

kb,cs = Ib/I
cs
b . Figure 4 shows the dependence of this ratio with (1 − η) for the LE site, using the REST2 227

clear sky model as basis for the kb,cs calculation and DNI measurements. A dependence on the solar zenith 228

angle (mapped in the color of the points) is not evident. In change, a clear dependence between the two 229

plotted variables is observed. In Laguarda et al. (2020) we noted that for GHI, the relationship of kc (GHI 230

clear sky index) and (1−η) can be modeled as linear, which is also used in other satellite GHI models (Perez 231

et al., 2002). In this case, it is evident that a more complex relationship is required for DNI. In order to 232

maintain only two adjustable parameters (a and b), a quadratic dependence is proposed, 233

F (η) = a (1− η)2 + b. (3)

It is expected that DNI suffers low attenuation with respect to the clear sky estimate when there are no 234

clouds (η ≃ 0) and total attenuation under overcast skies (η = 1). By having integrated data in one hour, 235

the average behavior results and the effects of partial cloudiness are softened. That is why Eq. (1) shows an 236

accumulation of points with kb,cs less than 0.1 and a smooth transition (associated with partial cloudiness) 237

towards values close to 1. Due to all these, the quadratic adjustment is carried out keeping both parameters 238

(a and b) independent, and b is expected to be close to zero. 239

11



Figure 4: Behaviour of the beam clear sky index using REST2 model at LE site.

Table 6 shows, for each site, the cloudiness factor parameters a and b. The adjustment of these coefficients240

is done along with the performance assessment (shown in Section 4) using a standard cross-validation241

procedure in which the data set is divided into two separated halves that are used for training and validation,242

respectively. This procedure is repeated 1000 times with random sampling to ensure repeatability, and the243

average coefficients’ value and performance metrics are reported. The last column shows the spatial average244

and the relative inter-site standard deviation of the mean (in parentheses), showing that the results are245

consistent over the three sites for each model. The inter-model average value of a is 0.89 and shows low246

spatial variability in all cases, while the independent term, b, is on average 0.055 with greater relative247

variations, depending on the model and site. In Laguarda et al. (2020), in the context of CIM models248

for GHI, the spatial robustness of the parameters allowed the application of a single average value of each249

coefficient at arbitrary locations in the region, without significant loss of precision. The same observation250

can be made for the DNI models presented here.251

4. All-sky DNI model performance252

The basic performance metrics for the two CIM variants for DNI estimation are shown in Table 7. The253

last row shows the mean measured DNI used for metrics’ normalization at each site and the last column254
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Model Parameter LE MS LU Average

CIM-McClear
a 0.875 0.836 0.901 0.882 (3.8%)

b 0.061 0.061 0.052 0.057 (8.6%)

CIM-REST2
a 0.922 0.859 0.899 0.905 (3.6%)

b 0.054 0.063 0.045 0.051 (16.7%)

Table 6: Cloud factor coefficients, Eq. (3), for each DNI CIM model using different clear sky estimates. The last column shows

the average across sites with its site dispersion in parenthesis.

shows the average for all sites. This is a weighted average in which the estimated relative uncertainty 255

associated with each data series is taken into account. By considering the maintenance schedule of each 256

station, a relative uncertainty of 2% was assigned to the LE and LU sites and 4% to the MS site. The 257

normalized squared inverse of these uncertainties was used as weights for the average, thus giving more 258

importance in this model’s assessment to the lower uncertainty data records. Small biases (less than ±0.7%) 259

are obtained for both models at all sites. Low biases are to be expected, since the coefficients a and b play 260

the role of a local adjustment. The averaged dispersion (quantified by the rRMSD) is between 18.4 and 261

19.1% and the KSI is between 15.8 and 18.4 Wh/m2. These metrics suggest that the CIM-REST2 with 262

MERRA2 inputs has greater accuracy than CIM-McClear with CAMS atmospheric information, for which 263

a small systematic underestimation persists in all three sites. 264

Model Metric LE MS LU Average

rMBD (%) −0.2 +0.1 0.0 −0.1 (0.2)

CIM-REST2 rRMSD (%) 17.1 22.4 18.7 18.4 (2.7)

KSI(Wh/m2) 14.0 18.6 16.8 15.8 (2.3)

rMBD (%) −0.4 −0.1 −0.7 −0.5 (0.3)

CIM-McClear rRMSD (%) 17.4 22.8 19.8 19.1 (2.7)

KSI(Wh/m2) 15.5 19.4 21.0 18.4 (2.8)

# data points 7622 12956 4376 24934

⟨Ib⟩(Wh/m2) 579.3 472.4 548.0 553 (55)

Table 7: Performance of DNI estimates for CIM with different clear sky models. The last rows show the number of data pairs

used (considering quality measurements and satellite availability) and the irradiation average over sites.

Figures 5a and 5b show the scatter plots comparing the DNI estimates from each model to the corre- 265

sponding ground measurements. The density of points is mapped to a green-yellow color map. The two 266
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high-density regions correspond to clear sky (high DNI) and overcast skies (low DNI). This can also be ob-267

served in the bimodal probability density plots shown in Figure 5c. Under clear sky conditions, the scatter268

plots for both CIM models do not exhibit any apparent bias. However, the density plot indicated that the269

CIM-REST2 model is a closer approximation to the clear sky data probability distribution. The dispersion270

is larger at intermediate values of DNI, indicating that DNI CIM methods have difficulties in accurately271

modeling irradiation under partial cloudiness conditions. It can also be noticed that the CIM-ESRA model272

has more difficulties in capturing the probability distribution of the DNI-measured data. Both CIM models273

are imprecise in representing the lower DNI values’ probabilities, indicating room for improvement in pre-274

dicting values close to zero. The CIM-REST2 is the best overall model from the probabilities point of view,275

correspondingly coinciding with the lowest metrics (and the KSI value in particular).276

Contextualization with alternative approaches for DNI estimation277

A first contextualization of the previous results arises from the comparison with DNI satellite-based278

estimations for other regions, such as those described in Table 1, keeping in mind that models can not be279

ranked nor compared using data from different locations or even different periods for the same location.280

Direct comparison is hindered by another issue, which is the lack of information in most previous studies281

about satellite spatial averaging and its ability to account for hourly values in an ergodic manner. The282

hourly performance can be enhanced by this factor. The only study that discusses ergodicity is the one283

conducted by Porfirio and Ceballos (2017), which used a cell size of approximately 12×12 km. However, the284

evaluation was performed on a daily time scale, making the comparison unfeasible. The results presented285

in Table 7 must be framed in this context, in particular, concerning the known performance of the other286

satellite-based DNI models at other locations.287

Another approach for DNI estimation is to use GHI information (either from measurements or from a288

satellite-based model) and a phenomenological diffuse fraction model estimate the diffuse component. Then289

290

DNI = GHI× 1− fd
cos θz

. (4)

where fd =DHI/GHI is the diffuse fraction. Since the separation problem depends on the typical local291

atmospheric composition there are many phenomenological models in use looking for the best balance292

between a minimal set of predictors and acceptable accuracy (Gueymard and Ruiz-Arias, 2016). Abal et al.293

(2017) locally adjusted and evaluated ten separation models using data from the same target region of294

this work. Of these, the one by Ruiz-Arias et al. (2010) strikes the best balance between simplicity of use295

and performance, being also operational (i.e. it does not require future information as input). This model296

(referred to as RA2s, according to the nomenclature of Abal et al.) has the form of a double exponential297

function,298

fd = a0 − a1 e
− exp(a2+a3kt+a5m), (5)
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with the set of locally adjusted parameters (ai for i = 0 . . . 5), for the specific values valid for the whole 299

region see Abal et al. (2017). The RA2s model is then essentially unbiased and can estimate the diffuse 300

(a) CIM-REST2+MERRA2. (b) CIM-McClear+CAMS.

(c) Probability density plot.

Figure 5: Scatter plots for each model in the LE site (a and b subplots). The density of points is mapped to green-yellow

colors. The last panel (c) shows the density plots for both models and the measurements (dashed line).
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fraction with an rRMSD under 20%, relative to an average value < fd >= 0.47.301

An obvious problem with this approach is that the error in the DNI estimates increases for low-Sun302

altitudes due to cos θz = sinαs becoming very small. The expression is also affected by the high uncertainty303

of empirical diffuse fraction models, which do not attempt to model in detail the complex scattering processes304

in the atmosphere. This becomes particularly relevant under partly cloudy sky conditions. However, due305

to its convenience, this phenomenological approach is still used in practice to estimate DNI in the absence306

of more reliable information. Table 8 shows the performance indicators when estimating DNI from either307

GHI measurements or GHI satellite estimates, by using Eqs. (4) and (5). This analysis has been done with308

the same data set used in Table 7 and is intended to provide a comparison of this simplified approach with309

the direct satellite DNI estimation from CIM models. For the case in which GHI satellite estimates are310

used, a satellite model needs to be selected. In (Laguarda et al., 2020), two CIM models for GHI, based311

on the ESRA (Rigollier et al., 2000) and McClear clear sky models, were implemented and evaluated with312

very good results for ten sites in the same region of this work (including the three sites used here). The313

simple CIM-ESRA model was unbiased and achieved an hourly rRMSD of 12.5% (based on an average GHI314

of 448Wh/m2), which was found comparable to more complex models5. These GHI estimates are used in315

Table 8. DNI estimated from both indirect models shows significant positive biases for all sites (≃ 6-7%316

on average). This is due to the use of the RA2s diffuse fraction model under partially cloudy skies, as was317

previously observed for data from the same region Abal et al. (2017). This causes an overestimation of DNI,318

after Eq. (4). This overestimation can be seen in the scatter plots of Figure 6 (LE site), particularly under319

partly cloudy conditions. The DNI estimated from ground measurements has a rRMSD of ≃ 17% which320

increases to ≃ 25% when satellite-based GHI is used, showing that the use of GHI satellite estimates in this321

indirect procedure significantly degrades the accuracy of the DNI estimation. This means that when GHI322

ground measurements and a locally adjusted diffuse fraction model are available, the simplified procedure323

yields acceptable performance compared to satellite-based DNI models. The requirement of a local diffuse324

fraction model presupposes that diffuse horizontal irradiance measurements are available at the site or in325

the surrounding area, which is not usually the case. In addition, the competitive ground-based strategy326

requires on-site GHI measurements. When the standalone satellite estimation is considered, it is clear that327

a dedicated satellite-based DNI model should be the preferred strategy, as all metrics are significantly better.328

These results indicate that CIM based satellite-based estimation of DNI is more accurate than indirect329

approaches based on phenomenological separation models, so it should be preferred for low to moderate330

albedo regions if satellite information is available. Other phenomenological direct-diffuse separation models331

may be considered, but we do not expect at hourly level a different conceptual conclusion in this target region.332

5The CIM-McClear for GHI performed slightly better (Laguarda et al., 2020) and the CIM-REST2 for GHI with MERRA2

atmospheric information gives very good estimates also (Laguarda, 2021). Since for GHI estimation all these CIM models have

similar performances for this region at the hourly level, any of them can be used equivalently.
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Site LE MS LU Average

Model GHI from measurements and Eq. (5)

rMBD (%) +4.3 +9.6 +9.3 +7.1

rRMSD (%) 14.4 19.1 18.3 16.7

KSI (Wh/m2) 35.0 46.1 51.7 43.7

Model GHI from CIM-ESRA and Eq. (5)

rMBD (%) +3.2 +8.5 +8.3 +6.1

rRMSD (%) 22.9 29.2 25.9 24.9

KSI (Wh/m2) 59.0 57.9 65.6 61.8

Table 8: Performance indicators for the two indirect methods to estimate DNI from Eq. (4) and the RA2s separation model.

(a) DNI estimated from measured GHI. (b) DNI estimated from GHI satellite estimates (CIM-ESRA).

Figure 6: Scatter plots for the DNI at the LE site obtained by indirect methods based on the RA2s phenomenological direct-

diffuse separation model locally adjusted for the region.

The situation may be different in other regions with different climates or typical geographical conditions. 333
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5. Conclusions334

Two new variants of a Cloud Index Model (CIM) that directly estimate hourly DNI are proposed,335

implemented and assessed. These models achieve typical uncertainties of less than 20% when evaluated with336

data from three sites in the Southeastern South America region (SESA) region. This area has a moderate337

surface albedo and is known to exhibit challenging intermediate short-term solar irradiance variability. This338

article extends to DNI estimation the findings of Laguarda et al. (2020) for the (simpler) case of satellite-339

based GHI estimation.340

The key elements introduced in this article are (i) a simple quadratic dependence of the attenuation factor341

(F ) on the cloud index and (ii) an ad-hoc procedure to calculate the satellite-based cloud index η for the342

DNI case. Two CIM variants are considered, based on different clear sky models (REST2 and McClear) and343

different sources for the required atmospheric information. REST2 is implemented with hourly atmospheric344

information from the MERRA2 reanalysis database and McClear uses atmospheric information from the345

Copernicus Atmospheric Monitoring Ssystem (CAMS, available every three hours). The CIMs are locally346

adjusted by tuning two attenuation factor coefficients using local DNI measurements. As a result, the CIM-347

DNI models are essentially unbiased (with average bias deviations within ±0.5%). The typical dispersion348

obtained, averaged over sites, was below 20% (in terms of rRMSD) for both variants. In the context of349

satellite-based DNI estimation worldwide, this can be considered a good indicator, even for locally adjusted350

models. The proposed quadratic relation between F and η is required, as opposed to CIM models for351

GHI estimation, for which a linear relation is good enough. The two adjusted parameters have low spatial352

variability across the three sites, suggesting they can be used in the broad SESA region without significant353

degradation of performance. In fact, the determination of the cloud factor F from satellite information is354

the most delicate aspect of the proposed CIM models’ implementation but it must be done once, since the355

results are applicable over large homogeneous geographical regions.356

These good results are achieved at a low cost in terms of implementation. The variant CIM-McClear does357

not even require the user to implement a clear sky model or deal with atmospheric data, since McClear’s358

estimates are downloaded from the CAMS website for arbitrary locations. The other variant is based on a359

clear sky model that can be locally implemented without difficulty and on atmospheric data which can be360

accessed from the publicly available MERRA2 site.361

An alternative method based on the use of phenomenological diffuse-direct separation models to obtain362

DNI from GHI estimated from a satellite CIM was tested. The results indicate a significant bias between363

3 and 8% and a rRMSD between 23 and 30%, depending on the site. The CIM-DNI models presented364

here represent the best alternatives for DNI estimation in this region. Both have similar performance and,365

depending on the application, one or the other strategy may be used. For research purposes, CIM-REST2366

with MERRA-2 atmospheric information is relatively simple to implement and provides full control over the367
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generated estimates. The CIM-McClear DNI estimates are delivered operationally, making it convenient 368

for some technological applications. Its use implies a lack of control, as the McClear model is not easy to 369

implement locally due to its inherent complexity. 370

As stated, even if the results presented in this article are specific to the SESA geographical region, which 371

has only moderate ground albedos, similar ideas can be applied successfully in other regions, provided they 372

do not have areas with high albedos (typically associated with deserts, permanent snow cover or salt flats). 373

Some of these regions exist in South America, so in future work these CIM models should be extended by 374

using infrared channel satellite information in order to successfully distinguish clouds in images with high 375

surface albedos. This could result in greater generality, provided an acceptable performance is obtained over 376

a continental scale. 377
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