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Abstract—This work presents and validates an intra-day
operational solar forecast for the southern cone of South
America based on GOES16 satellite images. The forecast is
evaluated over 12 photovoltaic (PV) generation sites in the
northwest of Uruguay. The irradiance predictions are obtained
from the combination of different satellite cloudiness forecasts
and a standard satellite-to-irradiance conversion model, both
specifically adapted to the region. The core of the system is
a Cloud Motion Vector (CMV) satellite technique, considered
in different spatial resolutions. The optimal linear combination
of a single-pixel and space-averaged CMV forecast with the
space-averaged persistence is proposed and analyzed. The
performance assessment of the individual sub-forecasts and
their combination is presented for each time horizon between
10 minutes and 4 hours, with a 10 minutes time step.

Index Terms—solar forecast, CMV, GOES16 satellite, GHI.

I. INTRODUCTION

The short-term variability of non-conventional renewable
energy resources such as wind and solar introduces un-
certainty in the electricity dispatch. The solar resource is
known for its high temporal and spatial variability, caused
by passing and forming clouds. As a consequence, the large
integration of solar energy to electricity grids poses a major
challenge for grid operators [1]. Mitigation actions can be
introduced to deal with the resource intermittency, including
storage solutions, spatial distribution of the variable gen-
erators and resource prediction. Solar resource forecasting
provides an informed decision-making framework, allowing
to optimally manage the generators (unit commitment) and
system reserves, reducing the operational costs associated
with the service’s quality and continuity, and lowering the
uncertainty in the electricity market transactions [2] both in
availability and price.

Solar predictions can be obtained by different means
depending on the time horizon and spatial domain [3].
There mainly exist four families of methods that cover
the practical uses, namely, numerical weather predictions
(NWP), satellite nowcast, ground-based sky images and
statistical tools, i.e. machine learning techniques. NWP allow
to forecast hourly irradiation up to several days ahead
[5, 6, 7] with global and regional coverage and varying
spatial resolution depending on the computational resources,
typically above 10 km. On the other side of the solar fore-
casting spectrum, ground-based cameras allow to forecast
1-minute irradiance with high spatial resolution (at plant
level) up to ' 30 minutes ahead [8, 9]. Satellite-based
solar forecasting strategies account for the intra-day time
horizons with ' 1 km spatial resolution [10, 11, 12]. They
are typically used for hourly forecast, but can be applied

in any sub-hourly time granularity, for instance, 30-minutes,
10-minutes and so on. This technique outperforms NWP up
to 4 hours ahead [13, 14], and is included in solar forecasting
systems of specialized data-providing companies. Finally,
the applicability of machine learning approaches critically
depends on their input variables, being able to act as a
standalone forecasting methodology by means of learning
the historic data behavior, as a post-processing technique by
using ground measured data or as a forecast integration tool,
combining different prediction sources.

In this work we build and evaluate an operational satellite
forecasting tool to predict solar global horizontal 10-minutes
irradiance (GHI) for Uruguay’s territory up to 4 hours ahead
with a refresh rate of 10-minutes. The system is based
on the cloudiness motion estimation from visible channel
geostationary satellite images. These kind of techniques are
known as CMV methods. The motion field is then used to
predict the future position of clouds, i.e. the future images,
from where a solar irradiance prediction can be produced
by using standard satellite-to-irradiance estimation models.
The cloudiness prediction developed here linearly combines
three sub-forecast’s outputs: (i) single-pixel CMV prediction,
(ii) space-averaged CMV prediction and (iii) space-averaged
persistence. Each sub-forecast and their combination are as-
sessed at cloudiness and GHI levels, showing that this simple
combination strategy success to outperform each individual
forecast. We provide the combination weights to be used
for the region, specially tuned for Uruguay’s photovoltaic
(PV) power plants’ locations, and show that a regionally-
tuned combination is enough for optimal performance, be-
ing of little value to optimize the combination for each
individual location. The operational version of the forecast
system is evaluated (http://les.edu.uy/online/pronostico.php),
thus addressing some inherent imperfections of the real-time
operation, such as the asynchronous image reception and
data gaps due to satellite maintenance, among others. This
is the first work that implements and evaluates these kind
of solar forecasting techniques with the GOES16 satellite’s
imagery in the region.

This work is organized as follows. Section II describes the
satellite data being used and the PV plants’ locations, for
which the predictions’ combination is adjusted. Section III
presents the forecasts methods and Section IV defines the
evaluation framework. The performance results and analysis
of the system are presented in Section V. Finally, Section VI
summarizes our conclusions.
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II. DATA

This work requires only visible channel geostationary
satellite images. Uruguay’s region is best covered by the
GOES-East meteorological satellite (GOES16) of the Na-
tional Oceanic and Atmospheric Administration (NOAA,
USA). The images are publicly available and distributed
via different broadcasting systems, including satellite com-
munications and internet. The image’s rate is of 10 min-
utes and their space resolution at the satellite nadir is of
500 m. The space resolution is variable across the image,
being of ' 1 km in our region. Both the space and time
resolution of this satellite’s images are adequate to model
a highly fluctuating phenomena like solar radiation. The
outgoing radiance measured by the satellite’s visible channel
is typically converted to planetary reflectance (ρ), which is a
proxy for cloudiness, as cloud’s reflect more solar radiation
to outer space than the typical soil backgrounds (excluding
for instance snowy areas or salt flats, not present in the
region of study). The cloudiness level is then represented
by ρ. Furthermore, clouds are the only moving object in the
images’ sequence, so subsequent images can be used directly
to estimate the clouds’ motion.

Satellite solar assessment models convert the ρ images
into solar irradiance images. Different models are available
for the different solar irradiance components. In this work
we use the locally adjusted CIM-ESRA model [15] for GHI
estimation. This model is used to produce the solar irradiance
forecast from the cloudiness (ρ) predictions, and also to
generate the GHI ground truth to assess the forecast. In light
of the high uncertainty of current solar forecasts, it has been
demonstrated that solar satellite estimations can be used as
reference for the performance evaluation [16].

This work is done with three months (April to June
2021) of operational solar forecast provided by the Solar
Energy Laboratory (LES, http://les.edu.uy/). Although the
CMV forecast is produced for all the satellite’s image span,
including Uruguay, Argentina, Paraguay, Chile, south Brazil
and south Bolivia, the forecast will be evaluated at Uruguay’s
PV power plants locations, showed in Table I. These sites
correspond to the northwest of Uruguay, a subtropical tem-
perate region with intermediate solar irradiance variability
[17], where the highest solar resource of the country is
available [18]. The ’bdo’ site groups six individual PV power
plants (P05-P10) which are located very close (in a radius of
less than 1 km). The aggregate of these sites is considered as
a single location to avoid geographical over-representation,
in particular, in the combination algorithm’s training.

III. FORECASTING METHODS

The CMV technique used here is the Farnebäck optical
flow algorithm [19], which allows a dense motion esti-
mation between two consecutive images. This method is
based on a second order polynomial expansion of each
pixel’s neighbourhood that is introduced to deal with noisy
sequences, providing smoother CMV estimations. This is an
interesting choice as satellite images are prone to noise in the
signal processing sense [11]. The algorithm is implemented

TABLE I
INFORMATION OF THE PV POWER PLANTS

station station lat. lon. Power

name code (deg) (deg) (MW)

ASAHI P01 -31.2807 -57.9171 0.5

La Jacinta P02 -31.4321 -57.9084 50.0

Alto Cielo P03 -30.4214 -57.4608 20.0

Raditon P04 -32.3871 -58.1328 8.0

Naranjal P11 -31.2627 -57.8709 50.0

Del Litoral P12 -31.4407 -57.8643 16.0

Menafra Solar P13 -32.6079 -57.4372 20.0

Arapey Solar P14 -30.8734 -57.4543 10.0

Natelu P15 -33.2617 -57.9917 9.5

Yarnel P16 -32.6860 -57.6066 9.5

Casalko P17 -32.2096 -58.0050 1.8

Bola de Oro bdo -32.2916 -58.0260 33.3

in our operational forecast with the CALCOPTICALFLOW-
FARNEBACK function of the Python OpenCV 3.x libraries
with the parameters of Table II. These parameters include
the window length, the down-scaling levels and configura-
tion, and some specifications for the polynomial expansion
implementation. More information about these parameters
can be found in the method’s OpenCV documentation. The
values of Table II resulted from a preliminary optimization
done by our team over a reduced set of images.

TABLE II
PARAMETERS USED FOR THE FARNEBÄCK OPTICAL FLOW METHOD

parameter value parameter value

winsize 22 pixels poly n 5

levels 4 poly sigma 0.848

pyr scale 0.39872 iterations 3

The future position of clouds is predicted by extrapolat-
ing the image’s motion. The extrapolation is the standard
backward search, in which the next image is constructed
by setting ρ(x, y, t + 1) = ρ(x − u, y − v, t), where (u, v)
is the CMV estimation, (x, y) is the spatial domain and
t is the time (in this work each time step represents 10
minutes). The following predicted images, ρ(x, y, t+h) with
h up to 24 (corresponding to 240 minutes, namely, 4 hours),
are generated in a recursive way by using the CMV and
the previous prediction, initiating with the image at time t.
This procedure is repeated every 10-minutes when each new
received image is available and is illustrated in Fig. 1.

The images’ predictions can be considered at an instan-
taneous single-pixel level (each PV plant is a single pixel)
or averaged over a close neighbourhood (spatial smoothing
of 10 × 10 pixels), which better represent the 10-minutes
average conditions via an ergodic assumption [15]. As it
will be shown in Section V, the single-pixel CMV method
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Fig. 1. Iterative procedure to predict the future images using the CMV and
the last received image (last available real image). The procedure is done
at cloudiness level (ρ).

is best performing for the shorter lead times while the space-
averaged CMV is best for the larger ones. This suggest to
combine them depending on the forecast horizon. Another
information that can be considered for the combination is the
persistence of the ρ image, both at single-pixel and space-
averaged levels. The common persistence (in this case, the
single-pixel approach) is usually difficult to outperform in
the shorter lead times [20] by more sophisticated forecasting
techniques (i.e. for intra-hour forecast). However, the joint
use of the single-pixel CMV and single-pixel persistence
lead to almost no performance change and, being the single-
pixel CMV best performing, we found no point in including
the single-pixel persistence in the combination. On the other
hand, the space-averaged persistence did provide an added
value to the combination, hence it is included in the current
operational system. This sub-forecast combination is done
at cloudiness level (ρ), as a linear combination with weights
wi. The weights are then enforced to depend on the forecast
horizon h and to satisfy

∑
i wi(h) = 1 for each h. The

combined solar forecasting system is illustrated in Fig. 2,
including the GHI conversion with the CIM-ESRA model.

Fig. 2. Forecast combination strategy.

IV. EVALUATION FRAMEWORK

To quantify the performance of the predicted series of ρ
and GHI in each site, the mean bias deviation (MBD) and
the root mean square deviation (RMSD) are used. These
similarity metrics are defined as:

MBD =
1

N

∑
i

(ŷi − yi), RMSD =

√
1

N

∑
i

(ŷi − yi)2,

where ŷi correspond to the predicted series and yi to the
reference data series [21]. These quantities can be also
expressed as a percentage of the mean of the reference data
(metric’s relative values). For ρ, the predictions are compared

with the satellite images directly, while for GHI the reference
data series are obtained with the CIM-ESRA model.

To assess the gain of the different forecasting methods,
the persistence benchmark is used. The persistence method
in this case is to maintain constant ρ for all the lead
times, i.e. ρ(x, y, t + h) = ρ(x, y, t) ∀h. This constant ρ
is then used for the GHI persistence via the CIM-ESRA
model. Note that a constant ρ does not imply constant GHI,
being the selected procedure a more exigent solar irradiance
performance benchmark than the prior.

V. RESULTS

For the sake of clarity and brevity the hereafter discussion
will be presented by tables that contain some of the forecast
horizons in the whole h = 1 . . . 24 span and figures. The full
data for all time horizons, including the operational weights
and the complete set of evaluation metrics, is provided to the
reader in http://les.edu.uy/RDpub/UY solar forecast.ods.

The sub-forecasts combination is determined by the
weights of the linear regression for each time horizon, wi(h).
Their evolution with the forecast horizon is illustrated in
Fig. 3 and shown in Table III. It is observed that the single-
pixel CMV has a higher weight (w1) for the shorter time
horizons. Then, its value drops almost to zero at ' 70
minutes (6-8 lead times). The space-averaged CMV be-
comes more relevant (w2) for intermediate forecast horizons,
reaching its highest weights at 60-70 minutes ahead and
remaining the most relevant for the majority of lead times.
On the other hand, the performance of the space-averaged
persistence method is increasingly important with the time
horizon, being almost equal to the space-averaged CMV for
the larger lead times (the last hour and a half of forecast, in
which w2 ≈ w3 ≈ 0.5).

Fig. 3. Weights vs forecast horizon, averaged over all sites (solid lines).
The shadow-bands represent one standard deviation between sites.

Fig. 4 shows the average relative RMSD over the sites of
Table I for all the forecasts methods and their combination,
at cloudiness level (ρ). As expected, the uncertainty increases
with the lead times. The single-pixel persistence is included
as a reference, and it is outperformed by all other methods.
The combined method achieves the best performance, and
is analyzed here in two manners: by using the specific
weights for each site (local) or by using the average weights

http://les.edu.uy/RDpub/UY_solar_forecast.ods


TABLE III
AVERAGE WEIGHTS TO BE USED IN THE REGION

lead time w1 w2 w3

10 mins 0.713 0.252 0.035

20 mins 0.508 0.377 0.116

30 mins 0.324 0.482 0.194

40 mins 0.209 0.542 0.249

50 mins 0.100 0.608 0.292

60 mins 0.037 0.647 0.315

90 mins 0.002 0.641 0.357

120 mins 0.000 0.609 0.391

150 mins 0.000 0.555 0.445

180 mins 0.000 0.509 0.491

210 mins 0.000 0.499 0.501

240 mins 0.005 0.476 0.519

across sites (regional). The performance of both combination
approaches is almost the same, overlapping in Fig. 4. This
means that the regional weights are enough to achieve almost
the best performance of the linear combination method and
that there is little value in fine-tuning the weights for each
site. The conclusions at GHI level are almost the same,
as shown in Fig. 5. The only minor difference is that the
single-pixel CMV method almost matches the performance
of single-pixel persistence for the last lead times, which
for instance is not relevant for the combination as w1 ≈ 0
for these forecast horizons. As observed by comparing both
figures, the uncertainty for GHI prediction is lower than for
ρ prediction.

Fig. 4. Performance assessment at cloudiness level (ρ).

Regarding the average relative MBD (over sites) all meth-
ods exhibit a similar behavior. This claim is illustrated in
Fig. 6. This figure shows the all-methods’ average trend
with the forecast horizon along with one standard deviation

Fig. 5. Performance assessment at solar irradiance level (GHI).

of the methods’ performance in shadow-bands, for both
cloudiness (blue) and irradiance (red) forecasts. As seen
in the figure, the inter-model standard deviation is low
for both curves, meaning that all models introduce similar
bias at each forecast horizon. Each model’s average relative
MBD is provided in the full data spreadsheet, where the
same conclusion can be derived. An opposite MBD trend is
observed for cloudiness and irradiance forecasts, as is easily
distinguished in Fig. 6. While cloudiness is overestimated for
the shorter lead times and underestimated for the larger ones,
the opposite occurs for solar irradiance. This behavior is nat-
urally understood as the occurrence of clouds is negatively
correlated with solar irradiance: if clouds are overestimated
then solar irradiance is underestimated, and viceversa. The
relative bias introduced in the solar irradiance forecast is
slightly lower than for cloudiness, with a span of 5.7% (GHI
interval [−0.4%;+5.3%]), in comparison with the span of
7.7% of the latter (ρ interval [+0.5%;−7.2%]).

Fig. 6. Relative MBD as a function of the forecast horizon. The solid line
represents the all models average while the shadow-bands represent one
standard deviation between models.



TABLE IV
PERFORMANCE METRICS FOR CLOUDINESS FORECAST

all models MBD (%) RMSD (%)
average standard persistence persistence CMV CMV local regional

lead time value deviation single pixel averaged single pixel averaged combination combination
10 mins +0.5 0.1 25.4 19.5 22.3 31.3 18.3 18.4

20 mins +0.9 0.1 30.3 26.1 25.5 38.1 24.1 24.2

30 mins +1.0 0.1 33.9 31.1 28.8 41.4 28.2 28.2

40 mins +1.4 0.1 36.8 34.8 31.9 43.8 31.2 31.2

50 mins +1.5 0.1 39.1 38.0 34.7 45.9 33.7 33.7

60 mins +1.4 0.1 41.3 40.5 37.1 47.9 35.9 35.9

90 mins +1.0 0.2 47.6 47.3 43.9 53.5 42.1 42.1

120 mins −0.2 0.1 52.6 52.3 49.5 57.7 47.0 47.1

150 mins −2.0 0.1 56.7 57.5 54.7 61.3 51.4 51.5

180 mins −3.8 0.3 59.9 61.4 58.9 64.1 54.6 54.7

210 mins −5.4 0.5 62.5 64.2 62.0 66.4 57.4 57.5

240 mins −7.2 0.8 64.6 66.7 64.7 68.3 59.7 59.8

TABLE V
PERFORMANCE METRICS FOR SOLAR IRRADIANCE FORECAST

all models MBD (%) RMSD (%)
average standard persistence persistence CMV CMV local regional

lead time value deviation single pixel averaged single pixel averaged combination combination
10 mins −0.4 0.1 16.8 12.6 14.1 20.6 11.4 11.4

20 mins −0.6 0.1 19.5 16.8 16.1 24.7 15.1 15.1

30 mins −0.8 0.1 21.5 19.7 18.0 26.6 17.4 17.5

40 mins −1.1 0.2 23.6 22.5 20.1 28.2 19.6 19.6

50 mins −1.2 0.2 25.3 24.8 21.9 29.9 21.3 21.3

60 mins −1.2 0.3 26.6 26.3 23.3 31.0 22.6 22.6

90 mins −1.0 0.3 31.3 31.0 27.9 35.3 26.9 26.9

120 mins −0.4 0.4 35.4 34.9 32.1 38.8 30.7 30.8

150 mins +0.7 0.3 39.1 39.4 36.6 42.1 34.7 34.7

180 mins +2.1 0.3 42.1 43.2 40.5 44.8 38.0 38.0

210 mins +3.6 0.4 45.3 47.0 44.4 47.8 41.3 41.4

240 mins +5.3 0.6 48.0 50.2 47.7 50.5 44.2 44.3

Tables IV and V provide the quantitative values of relative
MBD and RMSD for all considered methods averaged over
all sites and for some representative forecast horizons. In
the case of the relative MBD, the all-models average and
standard deviation are provided. Full results for these metrics
for all methods and forecast horizons are provided in the full
data spreadsheet, as mentioned before.

VI. CONCLUSION

A solar forecasting system was developed for the southern
cone of South America based on a satellite CMV technique.
This system is able to provide intra-day cloudiness and
surface global horizontal irradiance (GHI) predictions up
to 4 hours ahead with 10-minutes time steps based on
GOES16 imagery. The forecast is evaluated for 3 months
over the PV Power plants’ location in Uruguay (12 sites).
The most accurate method from the ones inspected here
is the linear combination of three inputs: a single-pixel

CMV forecast, a space-averaged CMV forecast and a space-
averaged persistence procedure. The weighting parameters
are robust and not strongly site dependent, so a unique set
of values can be used for all stations. The bias introduced by
each method has a similar trend with the forecast horizon,
and is slightly lower (in absolute terms) for solar irradiance
forecast than for cloudiness forecast, having both opposite
overestimation/underestimation behavior. The described al-
gorithm is currently providing operational forecast for these
PV sites in Uruguay with a 10-minutes refresh rate, but can
be upgraded to provide solar forecast at any site in the region.
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derived Solar Irradiation Map for Uruguay. Energy
Procedia 57:1237-1246, 2014.
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