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Abstract—Probabilistic regression is relevant in high-
stakes areas such as energy forecasting, financial risk as-
sessment, or healthcare. Deep models that directly output
a probability distribution usually use ensembles or frame
regression as classification into bins. In contrast, we propose
to optimize directly for the Continuous Ranked Probabil-
ity Score (CRPS), a proper scoring rule for probabilistic
predictions. For the flexible histogram-like distributions, the
CRPS is differentiable and can be used as the loss function
of any deep model. We derive and implement the CRPS
loss and showcase its performance against cross-entropy in a
solar forecasting application. This new loss enables anyone to
easily make any deep regressor probabilistic by simply using
the new loss with the same computational cost. Surprisingly,
using the CRPS loss provides superior results even when
training a deterministic regressor. Code and data available
at github.com/franchesoni/differentiable-crps .

Index Terms—CRPS, Probabilistic Regression, Deep
Learning, Solar Forecasting

I. INTRODUCTION

Predicting probability distributions is crucial in fields

where the consequences of predictions are significant,

such as energy forecasting, financial risk management, and

healthcare [1], [2]. Unlike traditional regression methods

that output single-point estimates, probabilistic regression

provides a full distribution, offering a richer understanding

of the uncertainty in predictions. Already in 1950 Brier

promoted probabilistic weather forecasting and introduced

a score for its evaluation [3]. Today, proper scoring

rules, which are minimized when the predicted distribution

matches the true distribution, are widely adopted in various

domains [2].

Despite the advancements, there is still room for im-

proving probabilistic regression, particularly through the

integration with deep learning. While deep learning mod-

els have gained popularity in healthcare, finance, and

meteorology [4], the common approaches to probabilistic

regression often involve complex ensemble methods or

Bayesian neural networks. Ensembles aggregate predic-

tions from multiple models, which can be computation-

ally intensive and require intricate post-processing [5].

Bayesian neural networks, though theoretically robust,

demand significant modifications to standard architectures

and specialized knowledge [6].

This paper introduces a straightforward alternative: opti-

mizing deep learning models directly using the Continuous

Ranked Probability Score (CRPS), a proper scoring rule

commonly used to evaluate probabilistic forecasts. By

reformulating the regression task to optimize the CRPS,

any deep learning model can be transformed into a

probabilistic regressor without the need for ensembles or

Bayesian techniques. The CRPS-based approach is both

intuitive and efficient, allowing for seamless integration

with existing deep learning frameworks and minimal ad-

ditional computational overhead.

The remainder of this paper is structured as follows:

Section II reviews related work, while Section III presents

our method, providing the necessary background and

notation, the current baseline, and the loss derivation for

deep models. Section IV presents experimental results

demonstrating its effectiveness. The main contributions of

this work are the introduction of the CRPS loss for deep

learning-based probabilistic regression and the demonstra-

tion of its practical benefits through its effective appli-

cation in solar irradiance forecasting. Finally, Section V

summarizes the main conclusions of this work.

II. RELATED WORK

The study of probabilistic forecasting spans multiple

disciplines, including meteorology, finance, healthcare,

and statistics [2], [5]. Evaluation of probabilistic forecasts

often relies on scoring rules such as the Brier score [3],

valued for its strict propriety [7], although alternative

scores like the log score may also be used [8].

Various methods have been developed for probabilistic

regression, including Heteroscedastic Regression Models,

Gaussian Processes, Bayesian Linear Regression, Quantile

Regression, and Generalized Additive Models. These ap-

proaches often integrate Bayesian techniques or ensemble

methods to enhance prediction accuracy.

Deep learning, known for its superior performance

with large datasets, has become increasingly relevant in

probabilistic forecasting. However, deep learning models



typically require significant adaptation to handle proba-

bilistic outputs. Bayesian neural networks and ensemble

methods are common solutions, but they introduce com-

plexity and computational demands [9]. This work builds

on the foundation of parameterized continuous distribu-

tions, as demonstrated in models like MetNet [10] and

Mixture Density Networks [11]. These models simplify the

transition from deterministic to probabilistic predictions

by modifying the loss function rather than the model

architecture.

III. METHOD

A. Background

Probabilistic regression implies predicting a probability

distribution. For a given input x, we observe an outcome

y. More specifically, one predicts a cumulative distribution

function F (y′, x) = P (y ≤ y′|x) that is conditioned

on the input x, which we will drop in what follows

for simplicity. Let us also define our neural network

gθ which is a parameterized function whose parameters

θ are adjusted using some gradient-based optimization

technique. Note that gθ(x) = ŷ where ŷ ∈ RB is a

real vector. The real vector ŷ parameterizes a probability

distribution. In our case we will focus on ŷ being the

probabilities assigned to each one of B bins. We call the

B + 1 bin borders b0 < · · · < bB and the bin intervals

themselves will be B1, . . . , BB . Note that the bins can

be of arbitrary size. To ensure that ŷ correctly determines

a probability distribution it is custom to use a softmax

normalization inside the network.

B. Cross Entropy Loss

Our main contender will be the cross-entropy loss used

originally for classification but also used in impressive

probabilistic regression applications [10]. The cross en-

tropy loss is defined as:

CE(ŷ, y) = −
B∑
i=1

p(y ∈ Bi) log ŷi, (1)

where p(y ∈ Bi) = 1y∈Bi .

C. CRPS as a metric

The Continuous Ranked Probability Score (CRPS) [12]

evaluates the entire predicted distribution, measuring the

integrated squared difference between the predicted CDF

(F ) and a step function centered at the observed value

(i.e. the perfect probabilistic forecast). It captures both

the accuracy and sharpness of probabilistic predictions,

rewarding models that provide both precise and calibrated

probability distributions. It is defined by:

CRPS(x, y) =

∫ ∞

−∞
(F (y′|x)− 1y≤y′)2dy′, (2)

where 1y≤y′ is the step function with the step at y =
y′. CRPS is the most expressive metric for probabilistic

regression as it captures both accuracy and sharpness and

it is also a strictly proper scoring rule [12]. A strictly

proper scoring rule is one that is only minimized when the

predicted distribution is identical to the true distribution of

the data.

In general, the CRPS should be computed numerically.

One way is to sample regular ys from a reasonable interval,

get the F (y) where F is the predicted CDF and compute

the mean squared difference against the step function of y.

For specific distributions such as the ones given by step-

wise linear CDFs (e.g. originating from histogram PDFs)

closed form formulas can be derived, which are exact and

fast, albeit not general. We derive one such formula in the

next section.

D. CRPS Loss Derivation

As mentioned above, the CRPS can be computed in

closed-form for some distributions. This is true for PDFs

that are step-wise constant (histogram-like). Not only that,

but this computation is differentiable with respect to the

predicted parameters.

Let us work with a CDF defined by bin borders bi and

point values F (bi) = P (y ≤ bi) with i ∈ [0, B], such

that F (b0) = 0 and F (bB) = 1. The network produces

outputs ŷi = F (bi) − F (bi−1). We assume we do not

know what happens between bin borders, thus we assign

uniform probability inside each bin. This means the CDF

will be composed by linear segments joining the points:

F (y) = F (bi)+
F (bi+1)− F (bi)

bi+1 − bi
(y−bi), y ∈ [bi, bi+1].

(3)

This can be used to compute the integral of F (y)2:

∫ bi+1

bi

(
F (bi) +

F (bi+1)− F (bi)

bi+1 − bi
(z − bi)

)2

dz

= −1

3

(
F (bi)

2 + F (bi)F (bi+1) + F (bi+1)
2
)
(bi−bi+1).

(4)

To fully develop the CRPS from Eq. (2) we assume b0 <
y < bB , name k the index such that bk−1 < y < bk and get

F (y) from linear interpolation between F (bk−1), F (bk)
using Eq. (3). The decomposition yields:

CRPS(F, y) =

∫ ∞

−∞
(F (y′)− 1y≤y′)2dy′

=

∫ y

b0

F (y′)2dy′ +
∫ bB

y

(F (y′)− 1)
2
dy′

=

∫ bB

b0

F (y′)2dy′ − 2

∫ bB

y

F (y′)dy′ + bB − y

= bB − y +

i=B∑
i=1

∫ bi

bi−1

F (y′)2dy′

− 2

(∫ bk

y

F (y′)dy′ +
i=B∑

i=k+1

∫ bi

bi−1

F (y′)dy′
)
, (5)

and find that the sum of individual applications of Eq. (4)

added to simple terms yields the score. For bB < y the

formula is CRPS(F, y) =
∫ y

b0
F (y′)2dy′ = (y − bB) +∫ bB

b0
F (y′)2dy′ and for y < b0 it is CRPS(F, y) = (b0 −

y) +
∫ bB
b0

(F (y′)− 1)2dy′.
Two approaches can be applied for the prediction of

a piece-wise linear CDF, one is histogram prediction for

given bins, which means fixing b0 < · · · < bB and



predicting F (b0) < · · · < F (bB) (we do this by predicting

a PDF which is used to compute the different F (bi)). The

other approach is to fix the F (bi) = i/B and predict the

bin borders b0 < · · · < bB , akin to quantile regression.

For this last case, the monotonicity b0 < · · · < bB must

be enforced, which can be done via predicting residuals.

We will focus on the former approach for the experiments.

IV. EXPERIMENTS

To validate our approach we conduct a fair comparison

between CE minimization, CRPS minimization, and Mean

Absolute Error (MAE) minimization. Note that CE and

CRPS are probabilistic and both predict the probability

assigned to each one of a set of predefined bins. In

contrast, the MAE is a deterministic loss, but it helps

to draw a connection with the deterministic prediction

literature.

A. Deterministic and Probabilistic Modes

It is well known that the MAE is minimized when the

model predicts the median of the true distribution. Inspired

by this fact, to use probabilistic algorithms as if they were

deterministic ones, we obtain the median of the predicted

distribution and use it as the point prediction. Note that

it is not the aim of probabilistic methods to provide point

predictions, but they can do it well if they learned to

correctly predict the probabilities. We evaluate all methods

as if they were deterministic in terms of the average test

MAE.

Analogously, even though a model trained with the

MAE is a deterministic one, we can turn it into a

probabilistic one by setting a step function at the point

prediction. This is similar to how the ground truth value

is treated and allows us to draw a parallelism between the

MAE and the CRPS: when the point prediction is used to

define a step-like CDF, the CRPS is exactly the same as

the MAE!

B. Data

To validate our approach we take a time-series of two

years (2016 and 2017) of Global Horizontal Irradiance

(GHI) measurements collected at the station of the Labora-

torio de Energı́a Solar, located in Salto, Uruguay. These are

high quality measurements that are accompanied by a clear

sky model [13] that estimates the GHI under cloudless

condition at any time. The clear sky model takes into

account the position of the sun with respect to the station

and the atmosphere state, leaving the clouds out. Dividing

the GHI by the clear sky estimates yields the Clear Sky

Index (CSI). We predict CSI, which can obviously be

converted back to GHI. CSI is dimensionless, and has

been processed so that nighttime is removed from the time

series following previous work [1]. The time basis of the

data is 10 minutes.

C. Data splits

We take the first half of the data to develop models,

and the second half to test them. This is one year of test

set comprising the four seasons. We ignore approximately

two days of the beginning of the test data to ensure

non-overlap. Correlation between points separated more

than one day is negligible. From the first half of the

data, we build a validation set by taking the first 5% of

the points and an interval in the middle with 5% more

points. These are summer and winter times, respectively.

We consider the task of predicting an hour ahead with

three hours of context. This implies that for a time series

x indexed by t, we set h = 6 and c = 18 and build

input-output pairs ([xt−c+1, xt−c+2, . . . , xt], xt+h). For

the probabilistic methods, we use the training set to obtain

b0 = 0 and bB = maxt (xt)(1+ 1/|X|), where |X| is the

size of the train set.

D. Model

We use a multi-layer perceptron (MLP) with GeLU

[14] activation function and a softmax layer at the end

for the multi-output models. One hyperparameter is the

model size, which is either small, medium or large. For

each model size, we sweep the learning rate and the

batch size in a grid defined at Table I. The optimizer is

AdamWScheduleFree [15] with 5% of warmup and the

number of steps 500. Finally, B = 100.

TABLE I: Hyperparameters considered for each model

Name Values
(neurons, layers) {(32, 1), (128, 3), (512, 5)}

batch size {32, 64, 128}
learning rate {1e-5, 4e-5, 1.6e-4, 6.4e-4, 2.56e-3, 1.024e-2}

E. Methodology

For each one of the three losses (MAE, CE, CRPS)

we try all model hyperparameter options for the same

number of iterations in the training set, while monitoring

the validation loss. We save the weights that achieve the

lowest validation loss for any point in the training and

any hyperparameter set. This way we obtain for each loss

function one model to be tested. The model weights are

initialized identically for a given model size.

F. Results

What we expect is the MAE loss to be the best for

deterministic predictions evaluated with the MAE and the

CRPS loss to be at least as good as the CE loss for

probabilistic predictions, both surpassing the MAE. Ta-

ble II shows the results: for the probabilistic prediction the

MAE loss is the worst, as the method is not probabilistic.

The CE is better but is surpassed by the CRPS loss by a

whopping 24%. Optimizing for the right thing can have a

big impact in the quality of the predictions. When looking

at the deterministic errors, the MAE loss is naturally better

than the CE loss, but surprisingly it is surpassed by the

CRPS loss. From this experiment, one could conclude that

the CRPS ought to be always used for regression, even

if it is deterministic. Further experiments are needed to

confirm the generality of this statement. However, looking

at literature from reinforcement learning, one can find that

distributional approaches work better than deterministic

ones [16], even when the interest is in a single value. None



TABLE II: Test set evaluation. Lower is better. Best results

highlighted.

Loss name MAE ↓ CRPS ↓
MAE 0.155 0.155
CE 0.171 0.128

CRPS (ours) 0.130 0.0975

Fig. 1: Predicted PDF using CE Loss (top) and CRPS Loss

(bottom) over Bishop synthetic data.

of these works optimize for the CRPS directly though,

which opens an avenue for improvement.

For the solar forecasting task, we also run all methods

with the same set of hyperparameters, namely a medium-

sized network, learning rate of 2.56 × 10−3, and a batch

size of 128. Test CRPS results are 0.157 for MAE

(slightly worsened), 0.097553 for CE (much improved),

and 0.097469 for the CRPS loss (same). This shows that

the main experiment was too sensitive to hyperparameter

selection, and that the CRPS is only slightly better than

using CE loss.

To further control and evaluate the performances in

probabilistic regression we reproduce the multi-modal

dataset of Bishop [17], composed of (x, y) pairs defined by

x = y+0.3 sin(2πy)+Uniform[−0.1, 0.1] (see Figure 1).

On this synthetic dataset, we observe that the CE loss

generates softer predictions and it slightly surpasses the

CRPS loss in test CRPS (0.0999 vs. 0.1001).

V. CONCLUSIONS

We have presented a new way of obtaining a deep

probabilistic regressor, namely training with the CRPS

loss. For histogram-like distributions, the CRPS loss is

mathematically straightforward and directly optimizes a

proper scoring rule, which is often the evaluation metric

itself. This allows the CRPS to be better than cross-

entropy, and even surpass the MAE loss for deterministic

forecasts. We showcase the effectiveness of the new loss

over a solar forecasting problem, obtaining improvements

over the two baselines. We hope our work will encourage

other researchers to explore probabilistic methods and to

improve those we now have.
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