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Abstract—This study implements a methodology to pro-
duce accurate, gap-free time series of solar irradiance and
PV generation data for a large photovoltaic (PV) power plant
in Uruguay. Addressing the challenge of data gaps in solar
energy monitoring, the work employs quality control tech-
niques, satellite-based solar irradiance estimation, solar radi-
ation and PV models, and gap-filling procedures to generate a
comprehensive five-year dataset at 10-minute intervals. The
resulting dataset allows detailed analysis of solar resource
availability, PV production and capacity factors. The study
finds an average capacity factor of 22.4% over the five-
year period, with monthly variations ranging from 14.1% to
28.1%. This work provides the first precise assessment of PV
plant capacity factors in Uruguay, providing valuable insights
for grid management and future solar energy investments.

Index Terms—PV, capacity factors, data quality control,
solar satellite estimates, gap filling

I. INTRODUCTION

The accurate estimation of solar photovoltaic (PV)
power generation and capacity factors is a critical aspect
for the optimization of investment strategies in the re-
newable energy sector. The capacity factor determines the
efficacy of PV systems by relating the actual generation
to the maximum possible generation when the systems
operate continuously at rated capacity. Information on
capacity factors is needed to operate, adapt or plan the
electricity infrastructure [1].

In the solar energy sector, the presence of data gaps due
to communication failures or discarded data from quality
control procedures poses a significant challenge to the
generation of complete and reliable time series data. Such
datasets are essential for detailed analysis of PV plant
operational indicators over time and can be used to im-
prove solar PV generation assessment tools. Missing data
can lead to incorrect assessments and misguided decisions,
highlighting the need to implement robust quality control
and gap-filling techniques. Various methods, including
time series interpolation, statistical filling and machine

learning techniques, can be used to estimate missing values
[2], [3]; other techniques use satellite data to fill the gaps in
the time series [4]. Of these options, satellite gap-filling is
the only one that uses the actual cloud cover over the site,
resulting in more accurate estimates of solar irradiance and
PV generation to replace missing data.

This work implements a methodology to generate a
multi-year gap-free solar irradiance and PV generation
time series for one of the largest PV power plants in
Uruguay. The techniques used are based on solar irradi-
ance estimation from satellite imagery, data site adapta-
tion, PV generation models and interpolation techniques.
The starting point of the analysis is the data recorded
at the PV plant, which is quality controlled, filtered and
gap filled. The uncertainty introduced by the gap-filling
models is quantified and compared with other studies.
The generated time series allow comparison with reference
studies in Uruguay [5]–[9] and enable the first accurate
assessment of PV generation and associated capacity fac-
tors in Uruguay. Both analyses provide key data for grid
decisions and the promotion of new PV investments.

II. DATA

A. PV plant measured data

The environmental and operational data of the large-
scale PV plants installed in Uruguay are public and
available on the ADME1 website. The PV plant known as
“La Jacinta”, located in the northwest of Uruguay (latitude
−31.43°S and longitude −57.91°W), is considered for this
study as it is one of the largest PV plants in the country.
It is a fixed panel PV plant with a DC capacity of 65
MWp and a nominal capacity of 50 MW. The variables
used in this study are the Global Horizontal Irradiance
(GHI), the Global Tilted Irradiance (GTI) and the PV
Power Production (PPV) on a 10-minute time scale. The

1Uruguay’s Electricity Market Administrator, https://adme.com.uy/.



period from 2018 to 2022 (five full years) was chosen due
to the availability of 10-minute satellite imagery, the same
time base as the data recorded at the PV plant.

B. Solar satellite data

Geostationary satellite imagery can be used to accu-
rately estimate hourly and sub-hourly solar irradiance
[10]–[12]. The 10-minute GHI at the site was estimated
using the satellite CIM-McClear model [13], which em-
ploys the McClear clear sky model [14], a regionally ad-
justed cloud index parameterization, and a locally adjusted
satellite ground reflectance model. The McClear model
estimates (GHIcsk) were downloaded from the SoDa plat-
form (http://www.soda-pro.com) and the satellite imagery
(GOES-16 visible channel #2) was provided by the Solar
Energy Laboratory (LES, http://les.edu.uy/). The satellite
all-sky GHI estimates were produced for this work. The
McClear estimates have also been used to calculate the
clear sky index, kc = GHI/GHIcsk, to be used for the
final interpolation step of missing data.

III. METHODOLOGY

This work involves a detailed analysis of the GHI, GTI
and PPV time series. Quality control techniques are used
for each variable and for groups of them, as they have
relationships that should be respected to some extent.

The three variables were first visually inspected to iden-
tify clearly anomalous data. GHI measurements that did
not pass the Baseline Surface Radiation Network (BSRN)
filters [15] or had large anomalous deviations from solar
satellite estimates were removed. A performance assess-
ment of the satellite data was conducted to determine
the maximum allowable deviation and compared with
other studies using the same technique in the region.
PPV samples with power generation limited by operational
constraints imposed by the system operator were removed,
as they affect the relationship between PV power output
and solar irradiance magnitudes. In this sense, the work
aims to estimate PV production and capacity factors in
Uruguay without operational restrictions (losses are then
attributed to O&M interventions or inefficiencies in grid
operation). Additional filters have been applied in the GHI
vs. GTI and GTI vs. PPV spaces to detect clear outliers
from the general relationship between variables.

The number and length of GHI data gaps after filtering
are identified and filled with GHI site-adapted satellite
estimates. The availability of satellite estimates determines
how many GHI data gaps remain to be filled by interpo-
lation. In such cases, a linear interpolation based on the
clear sky index is used. The previous gap filling (satellite
data and interpolation) allows the 10-minute GHI time
series to be completed within the five-year period. Very
little interpolation was required (less than 0.2% of the
data), and at most five consecutive 10-minute samples
had to be interpolated, with only two of these events.
GTI gaps are filled with GTI data estimated from GHI
using the transposition model known as HDKR [16].
Transposition models estimate the GTI with knowledge of
the direct and diffuse components of solar radiation. These
components were estimated from the GHI time series

using the univariate empirical separation model of Ruiz-
Arias et al. [17], with coefficients adapted to northwestern
Uruguay [18]. Finally, the PV power gaps were filled with
PPV data estimated from GTI and solar elevation (αs)
and azimuth (γs) angles (in deg.), using the multivariate
linear regression model shown in Eq. (1) trained with the
non-filled data. As the GHI dataset is complete after gap
filling, the GTI and PPV datasets are also complete after
this procedure.

PPVest = a1 GTI + a2 GTI2 + a3 GTI3 + a4 GTI4

. . .+ b1 αs + b2 α2
s + c1 γs + c2 γ2

s
(1)

The completed data sets are used to perform a de-
tailed analysis of solar resource availability, PV production
and PV capacity factor. Annual and monthly values are
obtained. The capacity factor (CF) is the ratio of the
annual/monthly generation (Et) divided by the maximum
generation of the system in continuous operation [19]. The
latter is calculated as the contractual nominal power (Pnom)
multiplied by the time considered (t, month or year), as
shown in the bottom part of Eq. (2). This metric provides
an important insight into the actual performance of the
system compared to its maximum possible performance.

CF =
Et

Pnom × t
(2)

The performance of the models used to calculate the
GTI and PPV from the GHI values and used for gap
filling is also evaluated. The Mean Bias Deviation (MBD)
and the Root Mean Square Deviation (RMSD) metrics are
used to quantify the models performance. Their relative
values are expressed as a percentage of the average of the
measurements.

IV. RESULTS

A. Models performance assessment

Gaps are filled using GHI satellite estimates (CIM-
McClear model), the separation (RA1) and transposition
(HDKR) models and the PPV regression model. GHI can
only be filled using GHI satellite data and interpolation.
The filtered GHI data represent 8.8% of the total daylight
samples, of which about 8.6% are filled with satellite data.
Measured GTI data can be filled with GTI estimated from
measured or estimated GHI, and PPV can be filled with
PPV obtained from measured GTI or estimated GTI from
GHI. In all cases, where applicable, the measurements are
preferred as the starting point for gap filling. The filtered
GTI and PPV data represent 3.3% and 11.0% of the
daylight samples respectively. Therefore, the models used
to estimate the GHI, GTI and PPV need to be evaluated.

Table I shows the performance indicators of the satellite
GHI and the RA1+HDRK GTI estimation. The first row
shows the GHI assessment of the CIM-McClear model
without any site adaptation post-processing (CIM-wa). It
can be seen that this model slightly overestimates the
GHI, with an rMBD of 4.9%. Therefore, a site adaptation
procedure [20] was applied, using the linear regression
coefficients to correct for the bias in the satellite estimates.
The metrics for the site corrected satellite GHI estimates



(CIM-sa) are shown in the second row of Table I. As
expected for this type of site adjustment procedure, the
rMBD decreases from +4.9% to +0.1%2, significantly
reducing the bias of the satellite estimates. For the relative
rRMSD, the fitted model shows a slight reduction from
16.0% to 15.2%. The values found are similar to other
studies in the region, where values of 15.6% and 17.1%
were reported in Refs. [21] and [22], respectively. Fig. 1
shows the scatter plots of the original and site-adapted GHI
satellite estimates compared to the ground measurements.
The left plot shows that the original satellite model over-
estimates, especially for low GHI values. The right plot
shows the site-adapted satellite data, where the regression
fit is practically the same as the x = y line.

The last row of Table I shows the performance of the
RA1+HDKR GTI estimation model. A low bias of +0.5%
and an rRMSD of 5.5% are found. This is comparable to
other studies carried out in Uruguay using the same model,
which report an rRMSD of around 4.1% [9]. It should
be noted that Ref. [9] used reference measurements from
a dedicated solar radiation measurement network with
class A sensors, calibrated every two years and regularly
maintained. Table II shows the performance indicators
of the PV estimation model. It is observed that the
model is unbiased with a relatively low rRMSD of 6.8%.
Compared to other studies, Ref. [23] found an rRMSD of
11.4% for daily power estimation using TRNSYS and the
isotropic tilted plane transposition model [24]. Ref. [25]
used different physical approaches to estimate PV power
in the Brazilian semi-arid region and found rRMSD values
ranging from 12.5% to 16.9%.

TABLE I
PERFORMANCE METRICS FOR GHI SOLAR SATELLITE ESTIMATES
AND GTI ESTIMATION FROM GHI AT A 10-MINUTE TIME SCALE.

MBD rMBD RMSD rRMSD ave. ref.
W/m2 % W/m2 % W/m2

GHI CIM-wa +21.4 +4.9 69.0 16.0 431.6

GHI CIM-sa +0.5 +0.1 65.4 15.2 431.6

GTI RA1+HDKR +2.3 +0.5 24.8 5.5 451.5

TABLE II
PERFORMANCE INDICATORS FOR PPV ESTIMATES AT 10-MINUTE

SCALE. THE REFERENCE PPV VALUE FOR NORMALIZATION IS
23.0 MW.

MBD rMBD RMSD rRMSD
MW % MW %

PPV regression model ≃ 0.0 ≃ 0.0 1.5 6.8

Fig. 2 shows the scatter plots for GTI (left) and PPV
(right) estimation. The spread in these scatter plots is
smaller than in Fig. 1, which is consistent with the lower
rRMSD of the PPV and GTI estimates compared to the
GHI satellite estimate. A slightly higher scatter is observed
for PPV than for GTI, which can be explained by PV

2This low residual rMBD value is due to a few negative site adapted
GHI samples that need to be restored to their original value for data
consistency.

model limitations with module temperature or soiling
effects. The PPV scatter plot is slightly asymmetric, with
more samples above the red line compensated by a few
larger outliers below the red line. This is confirmed by
Fig. 3, which shows the error histogram of the PPV
estimate together with a Gaussian distribution (in red) as
a reference. More frequencies are observed for positive
errors and a slightly larger tail is observed for negative
errors.

Fig. 1. CIM-McClear GHI scatter plot for original (left) and site-adapted
(right) satellite estimates. A regression line (yellow) is added to the left
plot.

Fig. 2. Scatter plots between the GTI satellite estimate and the PPV
estimate versus their corresponding measured values.

Fig. 3. Error distribution of the PPV, with a normal distribution (in red)

This performance assessment shows that the models
used to fill the GHI, GTI and PPV gaps are adequate.
In fact, these choices are all among the lowest uncertainty
options for this process. In particular, it should be noted
that they introduce low or negligible bias, which makes



them particularly suitable for annual and monthly analysis
(for which the averages mainly filter uncertainty, not bias).

B. Solar resource and PV production characterization

The monthly averages per year, calculated from the
complete 10-minute data series (without gaps) of GHI,
GTI and PPV, are shown in Fig. 4. The average of the
whole data period (2018–2022) is shown with a black line,
and the reference values for each variable are shown with
a blue line. In the case of the GHI, the reference values
come from the Uruguayan solar map (MSU3, [5]). For
the GTI, the available information is from the Uruguayan
Typical Meteorological Year (AMTU, [7]). The PPV is
compared with the data provided by the national electricity
grid operator, UTE 4. These studies serve as a reference
for the results obtained in this work.

Fig. 4. Monthly evolution of GHI, GTI and PPV values.

Fig. 4 shows the expected seasonal pattern in the region,
with higher values for each variable in summer and
lower values in winter. This pattern is more pronounced
for the GHI. The monthly means are clearly related as
the variations are similar. Higher inter-annual monthly
variability is observed in January, July and October over
this five-year period. In particular, the year 2019 shows
the lowest values to a considerable extent in January
and October. For the GHI, the monthly averages derived
from this work closely match the MSU estimates. The
absolute differences range from 0.3 MJ/m2 in July to
2.1 MJ/m2 in January, with a MAD of 1.1 MJ/m2 over
the whole period. A similar pattern is observed between

3http://les.edu.uy/online/msuv2/
4https://www.ute.com.uy/institucional/ute/utei/composicion-energetica

the obtained GTI series and the AMTU. The maximum
difference compared to the AMTU monthly averages is
2.7 MJ/m2 in January, while the minimum difference
is about 0.1 MJ/m2 in July. The PPV seasonal profile
is compared to the UTE reference, which is the sum
of reported monthly production. The estimated average
monthly production varies between 5.1 GWh in July and
10.5 GWh in December. This PPV is closely aligned with
the UTE reports, whose values range between 5.0 GWh
and 9.9 GWh for the same months. For the whole period,
the electricity generation estimated in this work amounts
to 490 GWh, while UTE reports about 468 GWh, which
is 4.8% less. This difference is mainly due to operational
restrictions (both from O&M and curtailed power), so it
is expected that the estimated values consistently exceed
the actual production in each month.

The monthly capacity factors calculated for each year
and the average for the whole period are shown in Fig. 5.
The annual relative anomalies are shown in Fig. 6 (the
difference between the annual average for each year and
their mean value, expressed as a percentage of the mean
value). As can be seen in Fig. 5, the CF is also affected by
the seasonal variation and follows the same trends as the
other magnitudes. The average monthly capacity factors
vary between 14.1% (in June) and 28.1% (in December).
In December 2021 the capacity factor exceeded 30%. The
capacity factor for the five-year period is 22.4%. The
anomalies range from +3.9% to −6.7%. The results in the
Fig. 6 give a first indication that, the PV plant produced
about 6% less energy during 2018-2019, while produced
about 4% more energy over the 2020-2022 period.

Fig. 5. Monthly evolution of the solar PV capacity factors.

Fig. 6. Percentage anomalies of generation year by year

In 2017, Ref. [8] (Uruguay’s solar map) estimated a
capacity factor of 17.2% for a PV plant in the same
location, but using DC capacity instead of nominal con-
tractual power as used in this work. In [6], similar values
were found for the Asahi PV plant in Salto from 2010



to 2013. The 4-year average CF calculated by the authors
was 17.6%. Performing the same calculation as in the two
previous works, but with the data from this work, the CF
obtained is 17.4%. Although the similarity is remarkable,
Uruguay’s solar map is based on 17 years of satellite
estimates, while this study averages only 5 years. A longer
history of PV plant operation would be required for a
conclusive comparison.

V. CONCLUSIONS

This study developed a 5-year, gapless, high temporal
resolution solar irradiance and PV generation time series
for the ’La Jacinta’ power plant in northwestern Uruguay.
The performance of the models used was quantified and
compared with other studies in the literature as well as
with real data provided by the grid operator. Accurate
annual and monthly PV production and capacity factors
were estimated from this dataset, leading to an accurate
assessment of PV plant operation over the period. This
study is the first detailed assessment of solar capacity
factors in the region through careful quality control and
low uncertainty gap filling. Future work aims to evaluate
other PV generation estimation models and calculate other
plant performance indicators. In addition, a similar study
is planned for single axis tracker plants. This will allow
the comparison of production performance for different
types of PV plant technologies in Uruguay.
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