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Abstract—This article focuses on maximizing the relative
net present value of a photovoltaic power plant by applying
optimization techniques to its design. The case study refers
to a 50 MW (AC) plant with parameters specific to the
northwestern region of Uruguay. Test scenarios are created
by exploring variations in energy prices, contract duration,
DC cable costs, project discount rate, among others. The
control variables include the tilt of the photovoltaic panels,
the number of series and parallel connections, the number of
rows and columns of photovoltaic blocks in the sub-park, the
distance between the rows, and the ratio of the DC power of
the photovoltaic panels to the nominal AC power of the plant.
According to the experimental results, the optimized relative
net present value ranges from 1.37 to 1.39, with optimized
capacity factors around 24%.

Index Terms—PV power plant, optimization, NPV,
Uruguay.

I. INTRODUCTION

Solar photovoltaic (PV) installed capacity is growing
at unprecedented rates around the world every year [1].
This energy source is next in line for grid expansion in
Uruguay [2]. Local optimization of the PV plant design
is important to make good use of the available solar
resource. This optimization has to take into account the
local meteorology, the local economic conditions (type of
contracts, prices, costs, tariffs) and technological aspects.
An optimized PV plant design can provide a better return
on investment by leveraging costs and energy production,
resulting in higher solar PV capacity factors (the ratio
of energy produced to maximum potential production).
However, when designing a large-scale solar farm, current
industry practice is to explore different configurations from
previous experience and run simulations using PVsyst [3]
or similar software to refine the design. This exploration
is typically done manually and covers only a minimal
fraction of the possible alternatives, resulting in sub-
optimal design choices.

The design of a large-scale grid-connected PV power
plant can be divided into several physical parts: i) the DC
design; ii) the choice of inverter architecture responsible
for converting DC (direct current) to AC (alternating
current) whose output is at low voltage (LV); iii) the LV
aggregation network that connects these inverters; iv) a
transformation level that raises the AC voltage levels of
the LV inverters to medium voltage (MV); v) a MV distri-
bution network to collect the power from the various MV
transformation centers; and vi) a station that transforms

from MV to high voltage (HV) before connection to the
national grid. Depending on the design, some of these
conceptual elements may be combined. In particular, the
inverter capacity may be high enough to justify a single
and dedicated transformation center, eliminating the need
for part (iii). There are also different topologies for a
PV power plant, depending on the connections between
the PV arrays and the inverters, the number and capacity
of the inverters, and the hierarchy of the inverters [4].
In particular, the central inverter topology is a modular
architecture that can represent either a complete park or a
sub-park within a larger PV installation, the latter being
the case in this work.

Previous research has explored how to optimize the
design of PV plants to maximize economic outcomes. The
article by Kerekes et al. [5], [6] is the most similar to
this work. The authors proposed a genetic algorithm to
optimize the layout and electrical models of PV plants
using financial metrics such as net present value (NPV),
internal rate of return (IRR), and levelized cost of energy
(LCOE). Their method includes geometric variables such
as panel tilt and block spacing, and electrical variables
such as panel type and interconnections. However, it does
not take into account land costs or low and medium
voltage wiring geometries. The optimization is based on
analytical reference models to continuously track the ex-
pected generation, whose parameters are adjusted through
simulations with the PVSyst software. Other studies have
focused on various aspects of PV farm design, taking into
account different locations, project sizes, technologies and
market environments [7]–[14]. These studies demonstrate
the complexity of PV system optimization and the need
to balance multiple variables such as financial metrics,
system layout, electrical configuration, and meteorological
factors to achieve optimal performance and maximum
economic profitability for large-scale PV installations.

This work presents an optimization of PV power plants
in Uruguay based on the aggregation of sub-parks and the
central inverter topology for each sub-park, using local
meteorological data and local contract characteristics, up
to the MV-AC level. The optimization is tested against
different DC cabling, panel costs, land costs, inverter costs,
and financial interest rates. Optimal designs are found
for each case and sensitivity analysis is performed. In
particular, an optimal design is obtained for the Northwest



of Uruguay and its production and profitability results are
discussed. The optimization results depend significantly on
the meteorological conditions and therefore could not be
directly extended to other regions. However, the method-
ology can be applied elsewhere if the meteorological data,
costs and financial conditions are given. In order to extend
the work to other regions and countries, the simulations
need to be performed with these local data.

This article is organized as follows. Section II describes
the meteorological data and the local market constraints.
Section III presents the optimization strategy and the
models beings used. Section IV provides the results and
their discussion. Finally, Section V summarizes the main
conclusions.

II. DATA

A. Meteorological data

The local meteorological dataset used in this study
is the Typical Meteorological Year for Solar Energy
Applications, known as “AMTUes” [15]. This dataset
contains hourly information on global horizontal, diffuse
horizontal, and direct normal irradiance (GHI, DHI, and
DNI, respectively), ambient temperature, relative humidity,
barometric pressure, and wind speed and direction. It is
based on 15 years of solar radiation data generated with
a low uncertainty satellite estimation model [16], locally
adapted to the specific characteristics of the Uruguayan
territory [17]. The non-solar quantities were measured
on the ground by national measurement networks. The
northwestern site of AMTUes was chosen for the analysis
(the Salto site, latitude −31.3°S and longitude −57.9°W).
This region has one of the highest levels of solar resource
in the country [18].

B. Local market

The case study in this article is the Uruguayan electricity
market, where - in most years - more than 90% of
annual electricity consumption is supplied by renewable
energy, with peak values of up to 98%. The success
of integrating non-conventional renewables to such an
extent in Uruguay is multi-causal, but largely explained
by the business model adopted, which is mainly driven by
long-term, fixed-price power purchase agreements (PPAs)
between the national electricity company and generators.
The existence of a reference price avoids the need to
follow the spot price on an hourly basis (as in [5], [6]),
but it requires the network operator to carefully design
these contracts, especially with regard to the price of
the energy supplied. The curtailments due to transmission
constraints or oversupply are paid to the generators by
estimating the curtailed generation based on the plant’s
solar measurements. The scheme described above helps to
de-risk investments and introduces long-term predictability
into the market, as auctions for new plants with a certain
installed capacity and contract expiry date are expected on
a regular basis. This is the main market organization for
centralized generation in Uruguay and is a key element
of this work, where the objective is to maximize the
relative net present value (NPV) under this framework,

disregarding generation variance and volatility. An as-
sumption that has a significant impact on the results is the
price of energy. For this study, a range of prices between
30 USD/MWh and 85 USD/MWh was evaluated. The
maximum value corresponds to the price of PPAs signed
in Uruguay between 2015 and 2017 for solar PV projects.
The minimum value corresponds to the expected medium-
term evolution of PV energy prices [19].

III. METHODOLOGY

The optimization objective in this work is the NPV, i.e.
the present value of future economic revenues, given a
general PV plant topology (model), its expected degrada-
tion, a cost structure and the data of Section II. The result
of the optimization is the PV plant model parameters (the
PV plant design) for the maximum NPV obtained. The
NPV is calculated as

NPV =

Tm∑
t=1

Et · Pt − Cs · Co

(1 + λ)t
− Cs, (1)

where Et is the energy produced in year t, Pt is the price
of energy in year t, Cs is the initial investment, Co is
the OPEX cost as a rate of Cs (note that Cs · Co is the
annual OPEX), λ is a reference interest rate, and Tm is the
duration of the contract (20 years for this case study). Et

and Cs depend on the design of the plant, the latter also
depending on the different costs. Pt depends on the terms
of the contract. Co is set to 1% according to the NREL
report on solar PV cost benchmarks [20]. The parameter
λ is varied during the sensitivity analysis, ranging from a
base of 2% [21] to 5%. The relative NPV is obtained by
normalizing with Cs, so rNPV = NPV/Cs.

As Et and Cs depend on the PV plant design, it is not
possible to estimate them in detail in advance based on
historical generation data or previous PV designs, although
these certainly provide a reasonable frame of reference.
Therefore, each PV plant design needs to be simulated
with local meteorological data in order to estimate its
power output and feed it into the optimization. The ap-
proach taken in this work is to use PVSyst simulations
with different plant designs. Since PVsyst does not have
an API and can only be run manually or with prede-
fined settings, it is not possible to integrate it directly
into the optimization. In change, several gridded PVSyst
simulations were performed (16836 simulations), from
which parameterizations were extracted for use with the
optimization framework.

Et is calculated as,

Et = Nv ·Nc ·Nr · (1− γe · (t− 1)) · et − Lw, (2)

where Nv is the number of PV panels per bench, Nc is
the number of benches per row (columns), and Nr is the
number of rows. γe is an annual efficiency degradation
rate, which was set to 0.7% in this work. Lw is the energy
loss in the DC wiring, an important part of the optimiza-
tion [22], depending of the wiring length and cable cross
sections. et is the annual energy per panel produced in



the first year of operation, and was parameterized from
the PVSyst simulations as

et = c1 + c2 · β + c3 · ξ + c4 · β2 + c5 · ξ2. (3)

In this equation, β is the tilt of the PV panels (facing
North), ξ is the ratio between the PV panels DC power
and the nominal AC power, known as the Inverter to
Load Ratio (ILR), and ci are the adjusted parameters.
ξ is also, the panel capacity relative to inverter capacity.
β is set here as a pre-optimized tilt angle for PV power
generation, which is linked to the local meteorological data
and the row spacing (lr) due to inter-row shading. Given
the meteorological data set, the optimized β is a function
of lr [22].

The energy price is calculated for each year as,

Pt = P1 · (1 + γp · (t− 1)), (4)

where P1 is the first year (initial) price and γp is an annual
energy price variation rate, both of which are specified in
the PPAs.

Finally, the installation cost is calculated as,

Cs = Ci+(Cm ·Nr+Ct ·lw ·(lh+lr ·(Nr−1))) ·Nc, (5)

where Ci is the inverter price, Ct is the land price, and
lw and lh are the width and length of each PV block. Cm

is the cost of the bench, which includes the cost of the
PV panels (Cp) and the cost of the structure (Cbs), and is
therefore calculated as follows:

Cm = Cbs +Nv · Cp. (6)

Fig. 1 shows a single line diagram of the installation
of each sub-park, from the low voltage DC level to the
medium voltage AC level. Fig. 2 illustrates the main
geometric parameters involved in the design of each sub-
park.
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Fig. 1. Reference components in a subpark with central inverter
architecture.

A fixed tilt panel, 50 MW nominal power plant with
1 MW sub-parks, rectangular layout PV farm topology
is adopted. Each sub-park has a central inverter topology
grouping Np PV blocks in parallel. Each PV block consists

Fig. 2. Geometric variables involved in the design

of Ns PV panels connected in series. Each sub-park layout
is arranged in Nc columns and Nr rows, which have N
PV panels arranged in ⌊N/Ns⌉ PV blocks connected in
parallel. The rows are separated by a distance lr (distance
between the projection of the row in the ground). Thus, the
implemented PV park model has the following variables
to optimize:

• Panels tilt and azimuth (β and γ angles, respectively).
• ILR factor (ξ).
• Number of parallel connected blocks (Np) and series

connected PV panels (Ns).
• Number of columns (Nc, benches per row) and rows

(Nr) in the sub-park layout.
• Width (lw) and length (lh) of each PV block.
• Distance between panels rows (lr).
• DC cables length and cross-sections.
Some of these variables depend on others in such a way

that one can be expressed in terms of the other within the
optimization process. This is the case for N and Ns, βopt

and lr, lw and lh with the number of PV modules per
block, and DC cable length with other distance variables.
Since no east-west asymmetry is considered, the panel
azimuth is trivially set to γ = 0 (North). The NPV
optimization also requires the setting of: (i) appropriate
local values for PV modules, inverters, structure, cabling,
land, O&M, and financial costs; (ii) an energy price rate
for each year (γp) as specified in the PPAs; and (iii) the
PV plant efficiency degradation rate (γe). In particular, the
inclusion of DC cabling energy losses and costs proved to
be an important element to consider in the optimization.
The cabling consists of two different types of cables:
Type II cabling, which is responsible for connecting the
PV blocks to each DC panel, and Type III cabling,
which is responsible for connecting the DC panels to the
inverters (and therefore requires conductors with a larger
cross section, which have a higher price). The detailed
relationship between Type II and Type III cabling with
costs and losses can be found in Ref. [22].

The optimization is also constrained by valid technical
and engineering criteria, to avoid producing results that
are not possible. Several voltage and current restrictions
are imposed by the inverters and the Maximum Power
Point Tracker (MPPT) system, given by the maximum
allowed values and the range of tracking convergence,
respectively. The inverter capacity also limits the ILR to a
maximum of 40%. The distance between the PV rows has
a minimum distance of 3 m to allow for vehicle circulation.



Other constraints are imposed by the formulation itself.
For example, a homogeneous, symmetrical and modular
geometric design has been chosen to ensure that the project
avoids any particular complexities during construction.
One assumption adopted is that the PV panels are arranged
vertically in groups of two, so Ns must be even to avoid
interconnecting blocks or PV panels of different rows,
ensuring clarity and simplicity in the wiring process.

IV. PROBLEM INSTANCES AND RESULTS

The optimization process is conducted in two steps.
First, tilt and azimuth are adjusted to maximize an-
nual energy production for a given row spacing. A pre-
optimization is performed after running simulations for
combinations of these three variables on a discrete grid
defined by technical limits. The simulations were done
using PVsyst software and local meteorological data for
the region. The results of this step not only identify the
optimal tilt and azimuth for a given row spacing, but also
allow the energy production per panel to be expressed
as a function of this spacing (using the optimal β as a
proxy). An analytical expression is then fitted to these
samples by linear regression (equation (3)). In the second
step, the remaining control variables are integrated with
the previously optimized production function to create the
complete model. This model integrates cost and revenue
functions along with financial parameters and metrics
to calculate the relative net present value, which serves
as the objective function to be maximized for each set
of parameters (i.e., each instance). Solutions are found
after examining feasible combinations of discrete variables
(e.g., the number of series and parallel connections, as
well as columns and rows), which are very few. For
each combination, the continuous variables are determined
using standard nonlinear optimization techniques (i.e.,
steepest descent).

A. Optimization results

The main general settings for the optimization were:
(i) polycrystalline PV panels of 325 Wp with a price of
0.47 USD/Wp [20]; (ii) 1 MW inverters with a cost of
0.05 USD/W1 [20]; (iii) an annual linear energy price
variation of 0.9% based on the estimate of the USD
producer price index variation used in the Uruguayan
PPAs for this price update; (iv) a maximum land cost of
0.58 USD/m2 [23]; (v) a fixed financial interest rate of
2%; and (vi) an annual PV plant efficiency depreciation
of 0.7%2. Several tests were performed with different
contract duration, energy prices, and DC cable types. A
subset of these tests is shown in Table I and their results
are shown in Table II. These tests are based on reasonable
and technically feasible possibilities.

In all cases, the optimization resulted in an optimal
tilt of 26°, an ILR of 32.6% (close to the maximum
capacity of the inverter), and 8 columns and 15 rows in
each sub-park layout. The row spacing and the achieved
capacity factor vary slightly in these simulations, as can

1100 kW inverters were also tested with worse optimization results.
2 https://atb.nrel.gov/electricity/2023/utility-scale pv

be seen in Table II. However, the relative NPV shows
significant variation, with a maximum value of 1.393
found in these tests. The optimal capacity factor obtained
in these tests was about 24%. It can be seen that, from
an NPV point of view, it is better to have contracts with
better energy prices and shorter duration than vice versa.
Another observation is that it is not worth investing in
DC cables with larger cross-sections, as the reduction in
Joule losses does not compensate for their higher price.
It is important to mention that if the optimization is not
carried out taking into account the DC wiring, the optimal
ILR was found to be 40%, the maximum inverter capacity.

TABLE I
TESTS WITH DIFFERENT DC WIRING AND CONTRACT CONDITIONS.

test USD contract type II wiring type III wiring
name per MWh years mm2 USD/m mm2 USD/m

C01 50 25 6 0.75 120 16.20

C02 50 25 10 1.25 120 16.20

C03 50 25 6 0.75 150 20.25

C04 50 25 10 1.25 150 20.25

C05 40 30 6 0.75 120 16.20

C06 40 30 10 1.25 120 16.20

C07 40 30 6 0.75 150 20.25

C08 40 30 10 1.25 150 20.25

TABLE II
OPTIMIZATION RESULTS WITH VARYING CONTRACT AND DC

CABLES.

test name lr relative NPV capacity factor

C01 14.6 m 1.393 24.0%

C02 14.6 m 1.390 24.0%

C03 14.6 m 1.376 24.1%

C04 14.6 m 1.373 24.1%

C05 14.3 m 1.152 24.0%

C06 14.3 m 1.150 24.0%

C07 14.3 m 1.137 24.1%

C08 14.3 m 1.134 24.1%

B. Sensitivity analysis

From the previous analysis, test C01 is the one with the
best NPV. This case is used as the basis for the sensitivity
analysis. Four parameter variations were analyzed, namely
financial interest rate, land cost, PV panel cost and inverter
cost. These variations of case C01 are labeled as S02 to
S13. The results of this analysis are shown in Table III. It
is observed that the financial interest rate has a significant
impact on the NPV, and when this rate increases up to
4%, the PV project becomes unprofitable. The price of
PV panels also has a significant impact on the economic
result of the project, as expected, and panels costing up
to 0.60 USD/Wp also result in an unprofitable project.
Naturally, the cheaper the PV panels, the more profitable
the PV project. Regarding the land price, it is observed
that an increase leads to a decrease in the row spacing
and almost no change in the NPV. The inverter price has



a limited impact on project optimization. All these results
are consistent with the cost structure of a PV project and
all achieve capacity factors around 24%.

TABLE III
RESULTS OF THE SENSITIVITY ANALYSIS.

test variable ls relative

name setting meters NPV

With varying financial interest rate, λ

C01 2% 14.6 1.39

S02 3% 14.6 1.14

S03 4% 14.6 0.92

S04 5% 14.6 0.73

With varying land cost

S05 0.30 USD/m2 16.4 1.39

C01 0.58 USD/m2 14.6 1.39

S06 0.70 USD/m2 14.1 1.40

S07 0.80 USD/m2 13.8 1.40

With varying PV panel cost

S08 0.30 USD/Wp 14.6 2.40

S09 0.40 USD/Wp 14.6 1.73

C01 0.47 USD/Wp 14.6 1.39

S10 0.60 USD/Wp 14.6 0.93

With varying inverter cost

S11 0.030 USD/W 14.6 1.46

S12 0.040 USD/W 14.6 1.42

C01 0.050 USD/W 14.6 1.39

S13 0.060 USD/W 14.6 1.36

V. CONCLUSIONS AND FUTURE WORK

This work presents a computer-assisted approach to ad-
dress the challenge of designing an optimal PV plant with
parameters specific to the northwestern region of Uruguay,
where the solar resource is most abundant and the trans-
mission network is readily accessible. Control variables
vary across multiple domains: the geometry of the photo-
voltaic panels (tilt and azimuth), the configuration of the
panel arrays (number of rows and columns of photovoltaic
blocks within a sub-park and the spacing between these
rows), the DC interconnection scheme (number of series
and parallel connections and sections for different types of
DC cables), and the AC to DC power ratio (inverter to load
ratio). The sensitivity analysis revealed that the financial
interest rate and the cost of the PV panels have the greatest
impact on the NPV. Relatively small variations in these
parameters determine whether a project is profitable or not.
Future work will include improvements to this framework,
including distinguishing the degradation of PV panels and
inverters from the overall efficiency degradation of the PV
plant, incorporating different PV technologies (such as dif-
ferent cell types, bifacial modules, and tracking systems),
and exploring alternative business models, among other
improvements. In addition, the optimization of PV plants
in other locations will be addressed.

REFERENCES

[1] IEA, 2022 Snapshot of Global PV Markets. Paris: International
Enery Agency, Photovoltaic Power Systems Programme, 2022.

[2] G. Casaravilla and X. Caporale, “Peg34: Planificación de la ex-
pansión de lageneracion decenal 2025-2034 de uruguay,” Facultad
de Ingenierı́a, Udelar, Tech. Rep., 2023.

[3] PVsyst. (2024) Tool for simulation, design and analysis of pv
systems. [Online]. Available: https://www.pvsyst.com/

[4] T. E. K. Zidane, A. S. Aziz, Y. Zahraoui, H. Kotb, K. M. AboRas,
Kitmo et al., “Grid-connected solar pv power plants optimization:
A review,” IEEE Access, vol. 11, pp. 79 588–79 608, 2023.

[5] T. Kerekes, E. Koutroulis, S. Eyigün, R. Teodorescu, M. Kat-
sanevakis, and D. Sera, “A practical optimization method for
designing large pv plants,” in 2011 IEEE International Symposium
on Industrial Electronics, 2011, pp. 2051–2056.

[6] T. Kerekes, E. Koutroulis, D. Séra, R. Teodorescu, and M. Kat-
sanevakis, “An optimization method for designing large pv plants,”
IEEE Journal of Photovoltaics, vol. 3, no. 2, pp. 814–822, 2013.

[7] A. Fernández-Infantes, J. Contreras, and J. L. Bernal-Agustı́n,
“Design of grid connected pv systems considering electrical, eco-
nomical and environmental aspects: A practical case,” Renewable
Energy, vol. 31, no. 13, pp. 2042–2062, 2006.

[8] J. D. Mondol, Y. G. Yohanis, and B. Norton, “Optimal sizing of
array and inverter for grid-connected photovoltaic systems,” Solar
Energy, vol. 80, no. 12, pp. 1517–1539, 2006.

[9] A. Kornelakis and E. Koutroulis, “Methodology for the design
optimisation and the economic analysis of grid-connected photo-
voltaic systems,” IET Renewable Power Generation, vol. 3, pp.
476–492(16), 2009.

[10] G. Notton, V. Lazarov, and L. Stoyanov, “Optimal sizing of a
grid-connected pv system for various pv module technologies
and inclinations, inverter efficiency characteristics and locations,”
Renewable Energy, vol. 35, no. 2, pp. 541–554, 2010.

[11] Kratzenberg, Martins, Nascimento, Rüther, and Helmut, Optimal
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[17] R. Alonso-Suárez, P. Toscano, R. Siri, P. Musé, and G. Abal,
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