••• UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Satellite-based variability of GHI and DNI solar irradiation in Uruguay

G. Abal, R. Alonso-Suárez, G. Giacosa, N. Márquez, I. Piccioli Laboratorio de Energía Solar, CENUR LN y Facultad de Ingeniería http://les.edu.uy - Universidad de la República, Uruguay

Abstract

Hourly global horizontal (GHI) and direct normal solar irradiation (DNI) are estimated using our own locally adjusted satellite-based irradiation model. DNI is estimated using a locally adjusted statistical correlation and daily, monthly and yearly totals are obtained. The satellite information consists of the complete set of GOES-East images (visible channel) from 2000 to 2017 (18 years). As expected, the results show that DNI variability is larger than GHI's. The minimum number of years necessary for a yearly average to be representative of the long term trend (to a 95% confidence level) is determined for each variable. This is the first study which aims to characterize the interannual and intermonth variability of solar radiation in the territory of Uruguay.

Results

Ground data (used for validation of satellite-based model)

BSRN-like station:

Database

LES site: Latitude = -31.28° , Longitude = -57.92° , elevation = 56 m asl

DNI: Kipp & Zonen CHP1 pyrheliometer mounted on SOLYS2 solar tracker (Fig. 1)

GHI: Kipp & Zonen CMP10 Class A, spectrally flat pyranometer (ISO 9060:2018)

Fig. 1: Solys 2 tracker with sensing instruments

calibrated every 24 months against our standard (CMP22 pyranometer) according to ISO 9486:1992 requirements. The site receives daily maintainance.

GHI data (2010-2018) and DNI data (2015-2018) not sufficient for climatological relevance Estimated (P95) uncertainties for hourly irradiation: GHI: 2 % and DNI: 1.5 %

GOES-East satellite data (used as input for local satellite-based model)

18 years (2000 - 2017) of sub-hourly satellite-based data aquired from the CLASS/NOAA service http://www.class.ngdc.noaa.gov

Image set amounts to \sim 900000 files: the visible channel and suitable background information are used to compute the planetary reflectance factor, Rp

See Ref. [1] for further calibration and pre-processing details.

Methodology

59°W 59°W

Fig. 5: Long-term monthly and yearly averages for GHI and DNI. Vertical lines are ± one standard deviation

Fig. 2: Left: Hourly mean reflectance factor from GOES-E images. Right: corresponding hourly GHI map from BD-JPT model [1].

Satellite-based model for hourly GHI estimates [1,2]

hourly diffuse fraction f_d estimated from double exponential

 $f_d = a_0 + a_1 e^{-\exp(a_2 + a_3 k_t + a_4 k_t^2 + a_5 m + a_6 m^2)}$

$$GHI = I_{sc}F_n \cos \theta_z (a + b \cos \theta_z + c \cos^2 \theta_z) + d(F_{Rm} - F_{Ro})$$

coefficients from local adaptation [1,3]: a = 0.602, b = 0.576, c = -0.341, d = -13.149 Wh/m2

 Θ_{1} is the solar zenith angle, F_{n} is the orbital correction factor, F_{Rm} the mean reflectance factor and F_{R0} , the background reflectance (no clouds).

Hourly DNI estimation [4,5]:

$$DNI = \frac{GHI}{\cos \theta_z} \left(1 - f_d\right)$$

Conclusions

Long term yearly totals are 6452 MJ/m2 and 6898 MJ/m2 for GHI and DNI respectively. DNI is 7% larger.

Significantly larger year to year variability is observed in DNI with P95 deviations of 10.8 % against P95 deviations of 5.6 % for GHI from long-term average (LTA).

For GHI, 2-year (or more) average differs less than ±5% from LTA. For DNI, at least 5 years are required.

References

[1] Alonso-Suárez, R. (2017). Estimación del recurso solar en Uruguay mediante imágenes satelitales, PhD Thesis, available at http://les.edu.uy/pub/tesis_ralonsosuarez_final.pdf [2] Justus, C., Paris, M., and Tarpley, J. (1986). Satellite-measured insolation in the United States, Mexico, and South America. Remote Sensing of Environment, 20(1): pp. 57-83. [3] R. Alonso-Suárez et al (2012). Brightness-dependent Tarpley model for global solar radiation

with locally determined coefficients [5], with rRMSD = 18 % and negligible bias.

Validation of daily irradiation against ground data (uncertainty estimation)

Estimated P95 uncertainty (% of mean) in monthly and yearly totals

	GHI	DHI
monthly total	2.0%	4.8%
yearly total	0.6%	1.4%

Fig. 4 Daily comparison between estimated and measured GHI and DNI

estimation using GOES satellite images: application to Uruguay. Solar Energy 86, pp. 3205–3215. [4] Ruiz-Arias, J. et al. (2010), Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditions. Energy Conversion and Management, 51(5): pp. 881–893. [5] G. Abal et al (2017). Performance of empirical models for diffuse fraction in Uruguay. Solar Energy, 141, pp. 166-181. [6]

Acknowledgments: This work was supported by Project FSE_110011 (ANII) and Proyect I+D CSIC "Caracterización del Recurso Solar" (UDELAR).

