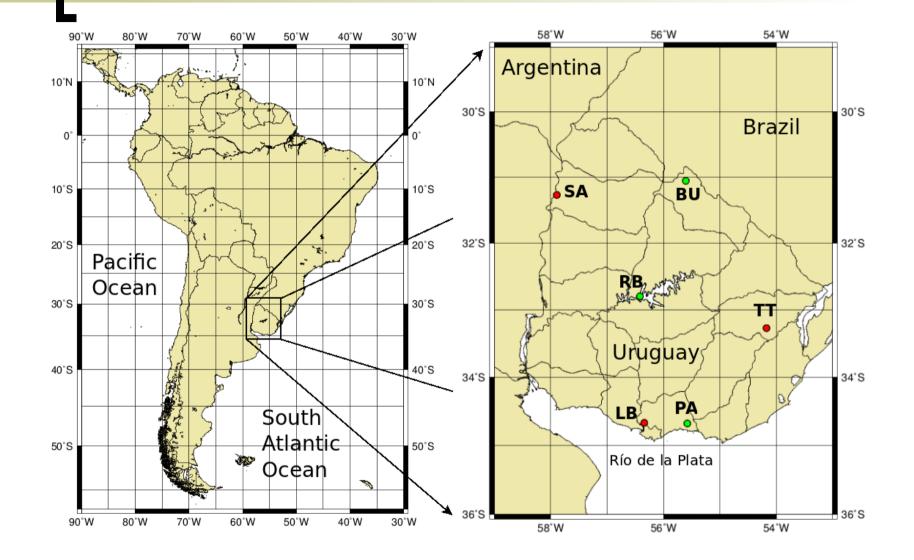
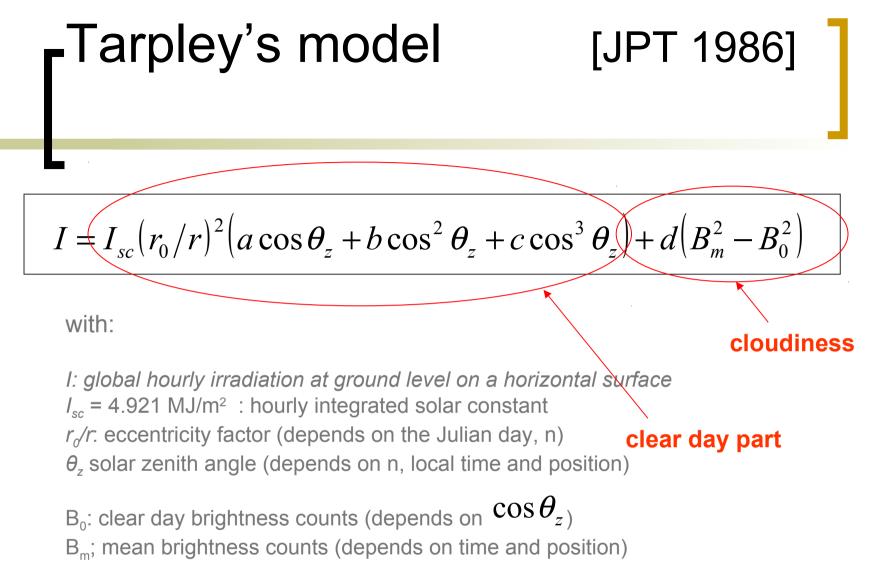
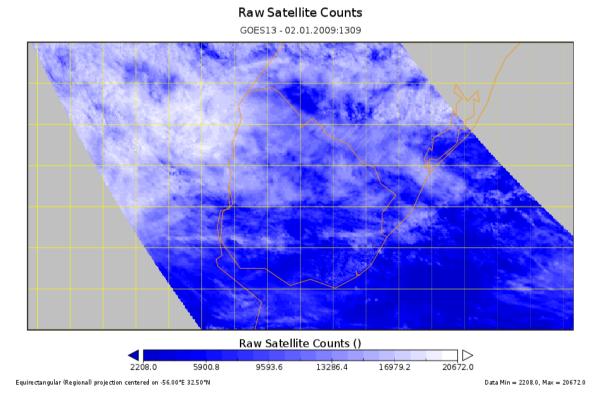
Solar Irradiation assessment in Uruguay using Tarpley's model and GOES Satellite images


<u>R. Alonso Suárez¹</u>, <u>G. Abal¹</u>, R. Siri¹, P. Musé² and P. Toscano²


¹Physics Institute, ²Electrical Engineering Institute School of Engineering, University of the Republic (UdelaR) Montevideo, Uruguay

target territory: Uruguay, South America

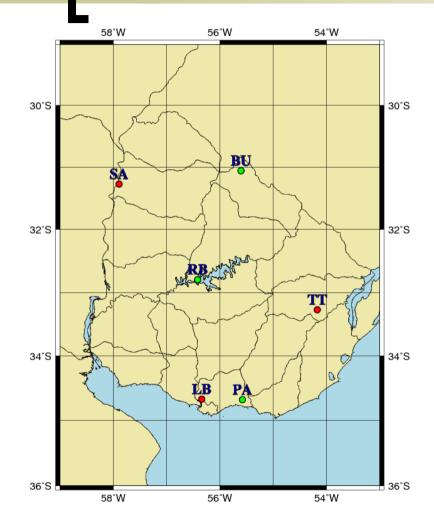


Coefficients *a*, *b*, *c*, *d* are derived (by linear regression) from local ground data (statistical model)

GOES Satellite images

- VIS channel provides cloud cover information
- we use 9586 GOES 13 Images (april 2010 june 2011)
- reduced images: cells of 10 x 10 min (19 x 16 km)

average brightness B_m is computed for each cell and each hour


past performance

Most comparisons with ground data were done using Tarpley's original coefficients derived for the Great Plains, U.S.: (a=0.4147, b=0.7165, c=-0.3909, d=-1.630 kJ/m²)

days	time period	observed mean (MJ/m²)	rms deviation (MJ/m²)	relative rms (% mean)	sites	reference	location
282	1982	15.1	1.9	12.6	1	Justus, Paris, Tarpley, 1986	Georgia, U.S.
765	1982	15.7	2.1	13.6	5	Espoz & Brizuela, 1983	Argentina
5322	1982-1983	16.3	3.2	19.6	13	Frulla et al. 1988	Argentina
4404	1982-1983	15.8	3.2	20.3	9	Frulla et al. 1990	Southern part of Brazil
715	2000-2002			17.3	5	Righini and Barrera, 2008 (*)	Argentina

(*) a local implementation, compared against the training data set

Ground measurements

Training set:

- new Kipp & Zonen CMP6 pyranometers
- 3 sites, 9931 valid hours
- used to determine B0, a, b, c, d

training site	code	latitude	longitude	alt. (m)	time period
Las Brujas	LB	-34.672	-56.340	32	02/2010 :: 05/2011
Treinta y Tres	TT	-33.275	-54.172	100	05/2010 :: 05/2011
Salto	SA	-31.273	-57.891	50	06/2010 :: 05/2011

Testing set:

- 3 sites, 11317 valid hours
- new Li-Cor PV sensors
- used to evaluate the model

test site	code	latitude	longitude	time period
Rincón del Bonete	RB	-32.800	-56.416	04/2010 :: 04/2011
Buena Unión	BU	-31.058	-55.602	04/2010 :: 04/2011
Piedras de Afilar	PA	-34.682	-55.575	01/2010 :: 04/2011

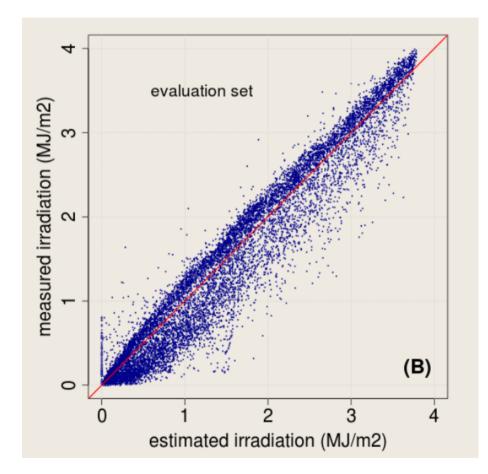
our implementation

the clear day brightness field, B₀ depends on location, Julian day and hour angle.

B₀ parametrization: [Tarpley, 1979]

$$B_0 = A + B\cos\theta_z + C\sin\theta_z\cos\gamma + D\sin\theta_z\cos^2\gamma$$

- γ is the angle between satellite and Sun directions
- Initial seed and a suitable cloudiness filtering procedure yield
 A, B, C, D for each cell (location) and each day

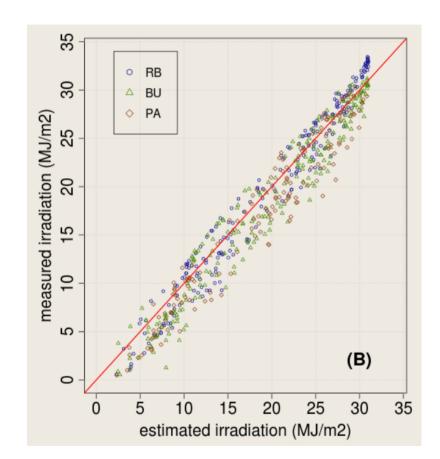

Our coefficients, obtained from linear regression, are a = 0.3016, b=0.8628, c=-4101, d=-0.760 kJm⁻²

Results

for hourly irradiation

- 11317 valid hours
- observed mean: 1.45 MJm⁻²
- rms deviation: 0.29 MJm⁻²

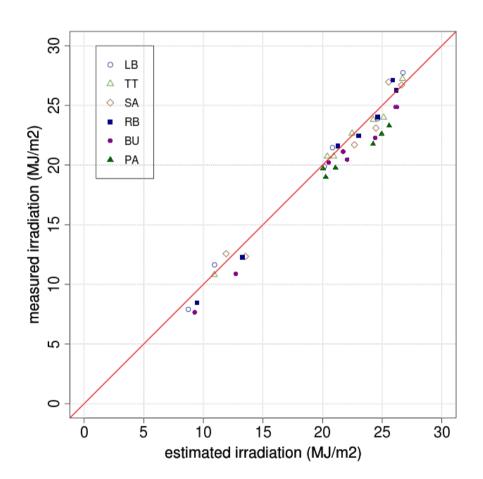
- relative rms deviation: 19.8%
- Inear correlation: ρ=0.968


Results

for daily totals

- 578 site-days
- observed mean: 18.4 MJm⁻²
- rms deviation: 2.2 MJm⁻²
- rms: 11.8 % of the mean
- Inear correlation: ρ=0.975

tendency:


- overestimation in cloudy days.
- underestimation in clear days.

Results

for monthly averages, of daily irradiation

- 21 site-months
- observed mean: 20.0 MJm⁻²
- rms deviation: 1.4 MJm⁻²
- rms: 5.7 % of the mean
- linear correlation: ρ=0.985
 for all six sites combined

Conclusions

- good balance between simplicity and accuracy.
- daily rms deviates of ~12% against the testing set are encouraging (among the best, afwk).
- improve procedure for determining the ground albedo (B₀ field)
- Iong-term estimates for the 2000-2010 decade can be obtained after calibration of the images.
- Near future: use a <u>physical</u> radiation transfer model to estimate solar irradiation.

Contact information:

Gonzalo Abal abal@fing.edu.uy Rodrigo Alonso rodrigo@fing.edu.uy Danke! Thank you! Gracias!

